
SPSS分析技术:多因素方差分析
下面介绍多因素方差分析。单因素方差分析和多因素方差分析都是针对一个因变量的方差分析方法,单因素方差分析是通过分析单个因素(自变量)的不同水平对应因变量的数据变化来判断该因素是否对因变量有影响;多因素方差分析则包含两个以上的因素(自变量),不仅需要考虑每个因素单独对因变量的影响,还需要考虑因素之间交互作用以后对因变量的影响。下面两个表格是单因素方差分析和两因素方差分析的数据整理表格。
多因素方差分析原理
我们以两因素方差分析为例,介绍多因素方差分析原理。 假设因变量可能受两个因素(自变量)A和B的影响,其中因素A有p个水平,因素B有q个水平,则两个因素的交叉将因变量数据分成了P×Q个水平,如下图所示。
分析A和B两个因素对于因变量的影响,仍然是从因变量的样本方差开始,样本的总方差SST可以分解为:
SSA代表因素A引起的因变量数据变化的方差;SSB代表因素B引起的方差;SSAB表示因素A和因素B交互作用引起的方差;SSE代表随机误差。假如因素A的水平发生变化,比如从水平1变化到水平2,无论因素B取那个水平,因变量观测值都要同时增加或同时减小,则表示因素A的变化就可以决定观测值的变化,此时称A和B没有交互作用;如果因素A从水平1变化到水平2,因变量观测值在B的不同水平上变化方向不同,在有些水平上增加,有些水平上减小,也就是需要A和B交叉的水平才能确定因变量的变化,此时称因素A和B存在交互作用。
分析步骤
1、提出成对假设;原假设是多因素方差分析原假设为各因素的各个水平下,因变量的均值没有显著性差异;备择假设是各因素的各个水平下,因变量的均值不完全相同。
2、构造F统计量;构造3个不同的F统计量:
3、计算F值及p值,做出判断;SPSS会自动计算各统计量观测值和对应的概率p值,并以表格方式输出。根据P值,进行统计检验。如果P值大于显著水平,则不能拒绝原假设,认为因素水平上没有显著差异;如果P值小于显著水平,则拒绝原假设,认为有显著差异。
案例分析
2016年的考研人数创造了历史新高,其中一个重要原因是人们普遍认为学历与薪资收入成正比。现有一份社会调查数据,采集了470名公司员工的学历、工资和工作年限等7项信息。用多因素方差分析方法分析性别和学历对他们的薪资是否有显著影响。
(例题数据文件已经上传到QQ群中,需要的朋友可以前往下载)
分析步骤
1、选择【分析】-【一般线性模型】-【单变量】,如下图所示,在跳出对话框中将工资选入因变量框,将学历和性别选入固定因子框。
2、概要图设置;点击绘图按钮,将学历选为水平轴,性别选入单图,点击添加。
3、点击【选项】按钮,按下图所示操作,其它保持系统默认设置,点击输出结果。
结果分析
1、主体间因子列表。
主体因子列表显示共有教育年限和性别两个因子,分别包含三个水平和两个水平,数字表示因子各水平对应的样本个案数。
2、方差齐性检验结果;
方差齐性检验结果显著性p等于0.000,小于0.05,说明方差齐性检验未通过,因此事后多重比较表也不具参考价值。
3、主体间效应检验表
修正的模型对应的p值为0.000,小于0.05,达到显著水平,说明学历和性别两个因素中至少有一个对当前工资的影响是显著的;学历的主效应F值为.226.372,P=0.000,达到非常显著的水平,说明学历对当前工资影响很大;性别对应的p值为0.022,小于0.05,说明性别对当前工资的影响也是显著的;学历*性别的交互效应p值为0.111,大于显著水平0.05,说明学历和性别交互作用后对当前工资的影响不显著。
4、概要图
由图可知,当前工资的均值在男女性别的两个水平上都随着教育年限的增加呈上升趋势。两条线有交叉,说明教育年限和性别有交互效应,但是从主体间效应检验表可知,交互效应没有达到显著性程度。
综合结论:数据分析结果显示学历对工资收入有显著性影响,这也证明考研人数屡创新高有其合理性存在。性别对收入也有显著影响,只是影响程度不及学历因素,说明社会发展到现在,职场对女性的歧视正在逐步降低,但是并未完全消失,仍需社会各方的努力。性别与学历交互后对工资收入没有显著影响,说明两者之间不存在明显的交互作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26