
SPSS分析技术:多因素方差分析
下面介绍多因素方差分析。单因素方差分析和多因素方差分析都是针对一个因变量的方差分析方法,单因素方差分析是通过分析单个因素(自变量)的不同水平对应因变量的数据变化来判断该因素是否对因变量有影响;多因素方差分析则包含两个以上的因素(自变量),不仅需要考虑每个因素单独对因变量的影响,还需要考虑因素之间交互作用以后对因变量的影响。下面两个表格是单因素方差分析和两因素方差分析的数据整理表格。
多因素方差分析原理
我们以两因素方差分析为例,介绍多因素方差分析原理。 假设因变量可能受两个因素(自变量)A和B的影响,其中因素A有p个水平,因素B有q个水平,则两个因素的交叉将因变量数据分成了P×Q个水平,如下图所示。
分析A和B两个因素对于因变量的影响,仍然是从因变量的样本方差开始,样本的总方差SST可以分解为:
SSA代表因素A引起的因变量数据变化的方差;SSB代表因素B引起的方差;SSAB表示因素A和因素B交互作用引起的方差;SSE代表随机误差。假如因素A的水平发生变化,比如从水平1变化到水平2,无论因素B取那个水平,因变量观测值都要同时增加或同时减小,则表示因素A的变化就可以决定观测值的变化,此时称A和B没有交互作用;如果因素A从水平1变化到水平2,因变量观测值在B的不同水平上变化方向不同,在有些水平上增加,有些水平上减小,也就是需要A和B交叉的水平才能确定因变量的变化,此时称因素A和B存在交互作用。
分析步骤
1、提出成对假设;原假设是多因素方差分析原假设为各因素的各个水平下,因变量的均值没有显著性差异;备择假设是各因素的各个水平下,因变量的均值不完全相同。
2、构造F统计量;构造3个不同的F统计量:
3、计算F值及p值,做出判断;SPSS会自动计算各统计量观测值和对应的概率p值,并以表格方式输出。根据P值,进行统计检验。如果P值大于显著水平,则不能拒绝原假设,认为因素水平上没有显著差异;如果P值小于显著水平,则拒绝原假设,认为有显著差异。
案例分析
2016年的考研人数创造了历史新高,其中一个重要原因是人们普遍认为学历与薪资收入成正比。现有一份社会调查数据,采集了470名公司员工的学历、工资和工作年限等7项信息。用多因素方差分析方法分析性别和学历对他们的薪资是否有显著影响。
(例题数据文件已经上传到QQ群中,需要的朋友可以前往下载)
分析步骤
1、选择【分析】-【一般线性模型】-【单变量】,如下图所示,在跳出对话框中将工资选入因变量框,将学历和性别选入固定因子框。
2、概要图设置;点击绘图按钮,将学历选为水平轴,性别选入单图,点击添加。
3、点击【选项】按钮,按下图所示操作,其它保持系统默认设置,点击输出结果。
结果分析
1、主体间因子列表。
主体因子列表显示共有教育年限和性别两个因子,分别包含三个水平和两个水平,数字表示因子各水平对应的样本个案数。
2、方差齐性检验结果;
方差齐性检验结果显著性p等于0.000,小于0.05,说明方差齐性检验未通过,因此事后多重比较表也不具参考价值。
3、主体间效应检验表
修正的模型对应的p值为0.000,小于0.05,达到显著水平,说明学历和性别两个因素中至少有一个对当前工资的影响是显著的;学历的主效应F值为.226.372,P=0.000,达到非常显著的水平,说明学历对当前工资影响很大;性别对应的p值为0.022,小于0.05,说明性别对当前工资的影响也是显著的;学历*性别的交互效应p值为0.111,大于显著水平0.05,说明学历和性别交互作用后对当前工资的影响不显著。
4、概要图
由图可知,当前工资的均值在男女性别的两个水平上都随着教育年限的增加呈上升趋势。两条线有交叉,说明教育年限和性别有交互效应,但是从主体间效应检验表可知,交互效应没有达到显著性程度。
综合结论:数据分析结果显示学历对工资收入有显著性影响,这也证明考研人数屡创新高有其合理性存在。性别对收入也有显著影响,只是影响程度不及学历因素,说明社会发展到现在,职场对女性的歧视正在逐步降低,但是并未完全消失,仍需社会各方的努力。性别与学历交互后对工资收入没有显著影响,说明两者之间不存在明显的交互作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18