
SPSS科普 | 统计描述
统计描述的目的就是了解数据的基本特征和分布规律,为进一步合理地选择统计方法提供依据。常用的有Frequencies、Descriptives
和Explore过程。
一、Frequencies过程
该过程用于产生数据的频数表,输出描述集中位置、离散趋势及分布形状等的指标,并能给出百分位数、绘制频数图等。
操作步骤:依次点击分析---描述统计---频率(图1),激活Frequencies对话框(图2)。将需要进行统计描述的变量从左侧变量框选至右侧变量框(以身高为例),点击“统计量”按钮,弹出图3对话框,根据需要勾选,通常选择“均值、标准差、最小值、最大值、偏度、峰度”,点击“继续”回到Frequencies对话框,点击“图表”,弹出图4对话框,选择“直方图”,并勾选“在直方图上显示正态曲线”,点击“继续”回到Frequencies对话框,点击“确定”按钮,即输出统计结果图5、6、7。
图1 激活Frequencies对话框
图2 Frequencies对话框
图3 统计量对话框
图4 图表对话框
结果解释:图5给出了样本量、均数、标准差、最大值、最小值和峰度等;图6为频数表,图7为相应的直方图,由于结果简单,易于理解,不再赘述。
图5 统计量
图6 频数表
图7 直方图
二、Descriptives过程
该过程对数值变量进行一般性的描述。其对话框与Frequencies类似。
操作步骤:依次点击分析---描述统计---描述(图8),激活Descriptives对话框(图9)。将需要进行统计描述的变量从左侧变量框选至右侧变量框(以年龄为例)。点击“选项”按钮,弹出图10对话框,根据需要勾选,通常选择“均值、标准差、最小值、最大值”,点击“继续”回到Descriptives对话框,点击“确定”按钮,即输出统计结果图11。因结果简单,不再解释。
图8 激活Descriptives对话框
图9 Descriptives对话框
图10选项对话框
图11 Descriptives结果
三、Explore过程
该过程使用描述性统计量和图形对变量进行探索性分析,还可以按照某个变量分组后描述其他变量的属性,可以快速获取资料的基本信息,为下一步选择统计分析方法提供依据。
操作步骤:依次点击“分析---描述统计---探索”激活Explore对话框(图12)。将需要描述的变量选至右侧因变量列表(以SAS得分为例),将分组变量选至因子列表(以性别分组),将编号选至标注个案。点击“统计量”按钮,弹出图13对话框,勾选“描述性、界外值、百分位数”,点击“继续”回到Explore对话框,点击“绘制”,弹出图14对话框,选择“按因子水平分组”、“直方图”、“带检验的正态图”,点击“继续”回到Explore对话框,点击“确定”按钮,即输出统计结果图11。
结果解释:SPSS首先给出按照性别分组情况(男、女各自样本量及所占比例)、描述性统计量、百分位数以及5个最大和最小值,因结果简单易懂,故不再截图展示;还显示正态检验的结果图15,红圈所示P>0.05说明服从正态分布,如果P<0.05,说明不服从正态分布;另外还有直方图、正态Q-Q图均显示正态分布情况,篇幅限制,不再截图。
图12 Explore对话框
图13统计量对话框
图14绘图对话框
图15 正态性检验结果
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18