
2.假设检验的两类错误
注意事项:拒绝或无法拒绝假设,并不等于100%的正确;两类错误的概率相加并不一定等于1;样本量不变的情况下, ߙ与ߚ不能同时增大或减小(如下图)。
3.假设检验的基本思想及遵循这样的思想、步骤等过程对业务与数据分析流程的指导作用
假设检验的基本思想为验证性数据分析,强调先验理论在数据分析中的核心地位。从提出假设理论出发,到验证假设的 过程提示,数据分析理论的先导作用,所以业务流与假设检验的步骤可以大体概括如下:
(1)建立原假设成立,确定业务需求,明确目的;
(2)确定小概率事件的界值,概率界值在不同行业中通用;
(3)获取样本,收集或调查数据;
(4)选择检验的方法。选择具体的统计方法; (5)确定 P 值,根据原需求和数据得出结论,需求目的是否得到支持。 所以可以看出,业务流程的数据分析与假设检验的流程是一致的。
一个总体,总体均值的假设检验,总体正态,总体方差已知,可以用样本均值的标准误差,按正态分布计算临界比率。
一个总体,总体均值的假设检验,总体为非正态分布,总体方差未知,大样本。原则上用非参数检验;n的样本量较大 (n大于等于30 或50),服从近似正态分布(总体已知)。
t 统计量的函数形式
一个总体,总体均值的假设检验,总体正态,总体方差未知,小样本(通常是指小于30)。
利用 P 值进行检验
P值是一种概率,一种在原假设为真的前提下出现观察样本以及更极端情况的概率,可以表示对原假设的支持程度,是 用于确定是否应该拒绝原假设的一种方法,当 P 值小于显著性水平的时候,就需要拒绝原假设,否则就无法拒绝原假设。
左侧检验的 P 值为检验统计量 X 小于样本统计值 C 的概率,即:P = P{ X < C}
1.单侧检验
(以右侧检验为例)P 值为样本统计值 X(将样本值代入检验统计量中的计算结果)右侧的面积(概率)。
2.双侧检验
P值为样本统计值的绝对值右侧的面积的两倍。
两个独立样本t检验(小样本)
用于检验两样本是否来自相同均值的总体。
1.如果没有理论、业务向导或也没有假设条件的情况下( )。
A. 这样有违数据分析的逻辑,不能分析
B. 可以进行探索性数据分析,了解数据情况
C. 需要选择比较准确的模型才可以做数据分析
D. 以上都不对
答案:B 解析:数据分析分为验证性数据分析和探索性数据分析,验证性数据分析是传统数据分析的主要 分析方法论,但探索性数据分析在先验假设不明确的情况下使用。
2.t检验统计量的适用条件判断( )。
A. 样本为小样本,并且总体方差已知
B. 样本为大样本,并且总体方差已知
C. 样本为小样本,并且总体方差未知
D. 样本为大样本,并且总体方差未知
答案:C 解析:C项符合,需要记住 t 检验的适用条件。
3.下列适合用 t 检验的有( )。
A. 比较某种化肥改良后,能否有助于提高某种农作物的产量
B. 判断商品质量(如添加剂)是否达标
C. 判断不同学历(如本科、硕士、博士)的收入差别
D. 检验不同性别的同学在英语成绩上是否有显著差异
答案:ABD 解析:t 检验的应用题,A项可以使用配对样本t检验,B项可以使用单样本t检验,D 项可以使用独立样本t检验,C项需要使用方差分析。本题是需要将t检验条件转化成 实际问题加以解决。
4.如果原假设 H0 为真,所得到的样本结果会像实际预测结果那么极端或更极端的概率称为( )。 A. 临界值
B. 统计量
C. P 值
D. 事先给定的显著性水平
答案:C 解析: P 值的概念理解。
5.某产品的次品率为0.17,现对此产品进行新工艺试验,从中抽取400件检验,发现有次品56件,能否认为此项新工 艺提高了产品的质量(α=0.05)。对于这个问题,正确的原假设是( )。 【注:P为次品率】
A.P≥0.17
B. P<0.17
C. P>0.17
D. P=0.17
答案:A 解析:参照假设检验的基本原理,一般认为如果提高了产品质量,那么我们要拒绝原假设,所以原 假设因为采用新工艺后次品率大于0.17的假设。
点击CDA题库链接,获取免费版CDA题库入口,祝考试顺利,快速拿证!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14