
SPSS分析技术:单样本T检验
T检验根据应用情况不同,可以分为单样本T检验、独立样本T检验和配对样本T检验。SPSS软件中的T检验也是按照这个逻辑进行分类的。
理论简介
统计学对于样本的大小一般这么认定:样本量在30以上就可认为是大样本;反之则为小样本。单样本T检验就是要利用来自某总体的样本数据,推断该总体的均值和指定的检验值之间是否存在显著性差异。它是对总体均值的假设检验,检验的前提是总体服从正态分布。
案例分析
对于中国学生来说,学好英语不是一件容易的事情。某学校用利克特5级量表对全校学生在英语学习过程中遇到的问题做问卷调查,结果如下表所示。分析该校学生在英语学习过程中遇到的主要问题是什么。
(例题数据文件已经上传到QQ群中,需要的朋友可以前往下载)
问题分析
可以通过单样本T检验来分析该校学生在每个问题上的平均得分和理论平均水平得分之间有无明显差异,以此推断该校学生在英语学习过程中,哪些问题对他们的困扰比较大。由于该量表为5级量表,因此每个项目的理论平均得分假定等于3。
分析步骤
选择【分析】-【比较平均值】-【单样本T检验】,打开单样本T检验对话框。将33个问卷问题选入检验变量;检验值填写3。点击确定,输出结果。
结果解释:由于结果比较多,只截取部分结果进行展示;
1、描述性分析结果;
上表是每个问题的描述性统计结果,列出了每个问题的平均得分,标准差以及均值抽样分布的标准差。
2、单样本T检验结果;
表中列出了所有问卷问题平均得分与理论平均得分的单样本T检验结果。如果表中显著性(双尾)的数值小于0.05,说明其所对应问题的平均得分与理论平均得分3有显著性差异,也就是说在很多问题上该校同学的感受与理论上的总体差异明显。如果问题对应的t值为负,说明在这些问题上该校同学的均值明显低于检验值。例如,问卷问题:在其他同学面前说英语的很自信,其对应的P=0.001,小于0.05的显著水平,拒绝原假设,说明该校同学在这个问题上与理论平均感受差异也很明显,但其t值为正(3.381),也就是实际感受明显高于平均感受,说明该校同学对与在别人面前讲好英语的羡慕和渴望不强。数据分析培训
3、双击T检验结果表格,在跳出的编辑窗口选择显著性(双尾),右键选择升序排列结果,可以快速筛选出p值小于0.05的问卷问题。所有p值小于0.05的问题都可以需要好好解读,可以充分了解学生学习英语过程中遇到的各种问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18