京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:麦叔编程
作者:麦叔
今天分享13个Python代码技巧。
来,数一数你知道几个。最后大家比一比!
1,2,3,开始!
作为程序员,一定离不开两个字:性能。
工作中经常要去解决性能的问题:
用time模块可以计算代码执行时间:
import time startTime = time.time()
# 要衡量的代码 for i in range(1000000):
print('麦叔:大家早上好!')
endTime = time.time()
totalTime = endTime - startTime print("总时间= ", totalTime)
你会吗?如果会,给自己加1分!
假设有两个列表,你想获取列表中的不同元素。
可以使用set的symmetric_difference方法:
list1 = ['张三', '李四', '王五', '大美', '如花'] list2 = ['张三', '李四', '王五', '麦叔'] set1 = set(list1) set2 = set(list2) list3 = list(set1.symmetric_difference(set2)) print(list3) #打印:['大美', '如花', '麦叔']
你会吗?如果会,给自己加1分!
在程序的世界里,内存是绝对的稀缺资源。程序员绞尽脑汁的想办法提升内存使用效率,有的为此头发都秃了。
所以了解某些对象所使用的内存数量是常用操作。使用sys.getsizeof可以获得对象所占用的字节数:
import sys
list1 = ['张三', '李四', '王五', '大美', '如花'] print("list1所用字节数 = ",sys.getsizeof(list1))
name = '麦叔' print("name的字节数 = ",sys.getsizeof(name))
注意:对于list等容器类对象,打印出的字节数只是容器本身占用的内存数,不包括它存放的内容所占用的内存。
了解Python的内存管理,请看我另一篇文章:
Python是如何管理内存的?
你会吗?如果会,给自己加1分!
第一个列表中存放了所有的迟到记录,里面有重复的名字。你上学迟到过吗?
我们要做的是去掉重复,获得一份没有重复的迟到人名单。
最简单的方法就是把list转成set,因为set是不允许重复的。
late_names = ['张三', '李四', '王五', '大美', '如花', '张三', '李四', '林志颖',
'大美'] print("迟到记录= ", late_names)
unqiue_late_names = list(set(late_names)) print("迟到过的人= ", unqiue_late_names)
你会吗?如果会,给自己加1分!
可以判断第一个元素的个数是否和列表的长度相同:
list1 = [20, 20, 20, 20] print("list1中都相同吗?", list1.count(list1[0]) == len(list1))
list2 = [20, 20, 20, 50] print("list2中都相同吗?", list2.count(list2[0]) == len(list2))
你会吗?如果会,给自己加1分!
有两个列表,里面内容相同,但顺序不同。
我们想确定一下它们是否完全相同。
有两个办法:
from collections import Counter one = [33, 22, 11, 44, 55] two = [22, 11, 44, 55, 33]
print("相同吗?", Counter(one) == Counter(two)) print("相同吗?", sorted(one) == sorted(two))
你会吗?如果会,给自己加1分!
由于set不能重复的特性,经常在判断唯一或者去重的时候使用。
下面的isUnque方法,通过推导式生成一个由None或True组成的序列。如果里面有True就说明重复:
def isUnique(item): tempSet = set()
return not any(i in tempSet or tempSet.add(i) for i in item)
list1 = [123, 345, 456, 23, 567]
print("list1都唯一吗? ", isUnique(list1))
list2 = [123, 345, 567, 23, 567]
print("list2都唯一吗? ", isUnique(list2))
你会吗?如果会,给自己加1分!
有时候从网上接收到的数据是字节码,比如这样的:xe9xbaxa6xe5x8fx94
我们需要把字节码转成字符串,否则就是乱码。
在转码的过程中也要使用正确的编码规则,否则还是乱码。
byteVar = bytes("麦叔密码", 'utf-8') print(byteVar) #编码规则不对,乱码:楹﹀彅瀵嗙爜
str1 = str(byteVar.decode("gbk")) print("字符串是:" , str1 ) #编码规则正确,
不乱 str2 = str(byteVar.decode("utf-8")) print("字符串是:" , str2 )
你会吗?如果会,给自己加1分!
循环的时候经常要打印序号,使用enumerate::
listOne = [123, 345, 456, 23] for index, element in enumerate(listOne): print(index, element)
你会吗?如果会,给自己加1分!
使用**给字典先解包,再把它们合并起来。合并的过程中,如果后面的key和前面一样会覆盖前面的value。
names1 = {1: '张三', 2: "李四", 3:"王五"}
names2 = {2: '麦叔', 4: "小强"}
all_names = {**names1, **names2} print(all_names)
你会吗?如果会,给自己加1分!
使用zip先把两个列表合成由元组组成的列表,然后再转成字典:
ids = [1, 2, 3, 4, 5] names = ['张三', '李四', '王五', '大美', '如花'] name_dict = dict(zip(ids, names)) print(name_dict)
你会吗?如果会,给自己加1分!
浮点数的计算可能会产生很多位小数,假设我们要求只显示2位小数:
number= 88.234578965467 print('{0:.2f}'.format(number))
你会吗?如果会,给自己加1分!
Python函数可以返回多个值,用逗号隔开。
实际上是返回了一个元组,但Python会自动解包,所以调用者可以直接使用返回值:
def total_diff(num1, num2): total = num1 + num2
diff = num1 - num2
return total, diff
total, diff = total_diff(99, 88)
print("总和:", total, "差额:", diff)
这13个小技巧,你会几个呢?别的小伙伴会几个呢?投票查看:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27