
来源:麦叔编程
作者:麦叔
作为一个搞技术的金融从业者,看到这个开源项目的时候,我的内心就两个字:卧槽!
从金融角度上,它涵盖了全面的股票数据,做数据分析和排行,并给出购买参考建议。
虽然市面上专业的App也有这些数据和功能,但这可是你自己用代码运行的项目。你可以在此基础上,实践你的想法,修改代码,做你的分析,建立自己的优势。
如果只是会用App和街上的大妈有什么区别?那个金融从业者不会自己做数据分析?
从技术角度上,这个开源项目非常综合,涵盖了:
如果一个人能把这个项目从头到尾学会,搞定。他找到一份Python开发的工作应该问题不大。
我觉得吧:
我们其实不缺好的开源项目,缺的是从头到尾去研究透一个项目的专注和决心!
你觉得呢?留言说说你的看法。
找到一个适合自己的好的项目,去把它研究透,好过泛泛的去看100个开源项目。
不要太在意技术是否主流,技术是相通的,同样都是Python,解决的问题也是一样的,学好一个很快就能学好另外一个。
这个项目就特别适合做金融分析,或者对金融,炒股有兴趣的,并且在学Python的人,可以一举三得:
特点提醒:这个项目主要是作为Python学习目的推荐给大家,也推荐给做金融分析的人!
但是我不建议小白盲目去炒股,尤其是现在大盘已经站上了3600点,已经到了街上大妈都在讨论股票的时候!如果现在进去,做炮灰的概率很大。
这是一个基于Python的全栈股票系统,先来上截两张图:
它每天定时(6点)抓取股票数据,计算指标,然后给出推荐。用户使用网页查看数据,看可视化报表,定制的自己的需求。
所谓全栈,一般指后端开发和网页开发通吃。我们来分的更细一点,这个项目涵盖这些内容:
我建议分几个步骤去学习:
从技术上,我们只要把别人打包好的Docker文件下载下来,直接运行就行了,不用安装Python,配置各种包。
这里有个例外,一般数据库是需要安装好的,这个项目也是的,需要先自己安装和启动MySQL数据库。
jobs文件夹 - 这个是抓取数据的文件夹,先有数据,才能分析和展示web文件夹 - 这个网站和数据展示部分
下面是我用Docker成功运行项目的步骤:
https://docs.docker.com/get-docker/
https://dev.mysql.com/downloads/
3. 下载最新的Docker文件
docker pull pythonstock/pythonstock:latest
mkdir -p /tmp/data/notebooks #创建临时目录
docker run -itd --name stock
-v /tmp/data/notebooks:/data/notebooks
-p 8888:8888
-p 9999:9999
-e MYSQL_HOST=host.docker.internal # for using Docker-for-mac or Docker-for-Windows 18.03+
-e MYSQL_USER=root
-e MYSQL_PWD=root
-e MYSQL_DB=stock_data
pythonstock/pythonstock:latest
网站系统: http://localhost:9999
用jupyter做分析: http://localhost:8888
系统也支持通过Jupyter做实时的数据分析:
但登录Jupyter需要先获取token:
docker exec -it stock bash
jupyter notebook list
下面这是项目链接,点击查看原文也可以跳转到项目页面:https://github.com/pythonstock/stock
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29