京公网安备 11010802034615号
经营许可证编号:京B2-20210330
红红火火的618、双十一、双十二等电商购物狂欢节席卷中国,就算是耄耋之年的老人,或奶声奶气的孩子,都知道网购为何物,可见电商在国内火爆的程度。
然而,你是否有发现一个很奇怪的现象,在知乎上经常能看到有人质疑电子商务专业没啥用?
一般按常理而言“市场导向决定供需关系”,正如大数据的繁荣,带来的是各大高校纷纷新增大数据相关专业,报考率也逐年攀升。
可是,随着电商在国内越来越火爆,电子商务专业的前景和名声在坊间的口碑却越来越差。
有人认为,电商是一门严重被低估的专业,也有人表示它是“杂学”。总而言之,谈论最多的还是规劝趁早转专业之类的说辞。
据悉,每年电子商务专业毕业生专业对口就业率不足15%,难道火爆的电商行业,不需要专业电商人才的输入,为什么它带不火电商专业。
电子商务“火&渣”并存
所谓电子商务(电子+商务),可简单理解为网络技术与营销,是个很大、很泛的专业。
美其名曰,学下来就能文能武,然而很多学这个专业的师兄师姐们都曾迷茫过,自己似乎什么都懂,但又好像什么都不会。
因此,电商专业一直被网上盛传“没用”,甚至有人表示学了4年电商,还不如回家卖红薯。
为啥出现了这种怪象?
其实,和学计算机一样,专业本来无所谓好坏,关键在于选专业的人,是否真正了解自己所选的专业。
99%的电子商务知识源自实践,它是一门绝对无法纸上谈兵的行业。故而,只懂理论知识是远远不够滴!
一个资深电商人与电商小白的问答,值得大家深思。
问:4P学过吧?
答:学过。
问:PS学过吧?
答:学过。
问:html学过吧?
答:学过。
问:消费者心理学学过吧?
答:学过。
问:ERP跟CRM有沙盘练过吧?
答:练过。
问:那为什么你工作中都没用上?
答:……
是啊!这些实用的电商知识我们在学校都学过,但为什么一到工作中,就无所适从了呢?
这就是学电商专业和做电商人的区别,正如已将全套解剖过程背到滚瓜烂熟的学生,第一次面对尸体时同样会束手无策。
实际运用会更细化,讲究灵活应变,而大学所学理论只是知识层面的东西,你需要通过接触、操作、实践后,才能把这些学以致用。
与其说电商专业无用,不好就业,不如说你没有把学到的东西落地。
如何让学到的知识落地?
学以致用最佳办法就是复制成功的模式,复盘真实的成功案例,从其中找到脉络,顺藤摸瓜,掌握实战精髓所在。
当然,说到电商实战项目的真实数据资料,最好能来自权威的大厂中,如:京东、淘宝等。
为打破“电商专业无用”的魔咒,CDA核心讲师携手京东师资推出《电商数据分析师实训营》,课程基于CDA数据分析EDIT数字化认证考试模型研发,京东真实项目数据,旨在培养全领域电商行业数据分析师。
手把手将电商职场零基础人群,打造成竞争力强的电商数据分析师领域专家,拥有一线大厂核心骨干水平,成为电商行业权威!
不仅如此,你还可拿到京东+CDA电商官方认可的电商行业认证证书,《电商数据分析师实训营》是你入门电商数据分析的不二选择。
感兴趣的同学,可以点击查看详情>>
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05