京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:Python猫
作者:豌豆花下猫
最近,我在翻阅两本比较新的 Python 书籍时,发现它们都犯了一个严重的低级错误!
这两本书分别是《Python编程:从入门到实践》和《父与子的编程之旅》,它们都是畅销书,都在 2020 年 10 月出了新版本,都使用 Python3.7+ 版本的语法。
然而,在关于变量的命名规则部分,它们犯下了一样的错误,即还在使用 Python2 时代的那套说辞,误以为命名仅仅支持“字母、数字和下划线”的组合。事实上,Python3.x 已经支持全面 Unicode 编码,比如支持使用中文作为变量名。
>>> 姓名 ="Python猫" >>> print(f"我是{姓名},欢迎关注!")
我是Python猫,欢迎关注!
由于我手头上没有其它样本,所以,我不确定有多少新版的书籍还在使用老的规则。但是,翻译类的书籍大概率都会有这样的问题,另外,有些不严谨的国内书籍,也可能因为借鉴了过时的材料而犯错。
如此一来,恐怕有些新接触 Python 的同学,就会形成错误的认识。虽然这可能不会造成严重的问题,但是它终归是一个应该避免而且很容易就能避免的问题。
因此,我觉得这个话题值得聊一聊。
在编程语言中有一个很常见的概念,即标识符(identifier),通常又会称之为名字(name),用于标识出变量、常量、函数、类、符号等实体的名字。
在定义标识符时,有一些必须要考虑的基本规则:
对于第一个问题,大多数的编程语言在早期版本都遵循这条规则:标识符由字母、数字和下划线组成,并且不能以数字为开头。 少数的编程语言有例外,还支持使用$、@、%等特殊符号(例如PHP、Ruby、Perl等等)。
Python 的早期版本,确切地说是 3.0 之前的版本,就遵循以上的命名规则。下面是官方文档中的描述:
identifier ::= (letter|"_") (letter | digit | "_")* letter ::= lowercase | uppercase lowercase ::= "a"..."z" uppercase ::= "A"..."Z" digit ::= "0"..."9"
出处:https://docs.python.org/2.7/reference/lexical_analysis.html#identifiers
但是,这条规则从 3.0 版本起,就被打破了。最新的官方文档已经变成了这样:
出处:https://docs.python.org/3/reference/lexical_analysis.html#identifiers
随着互联网的普及,各国语言进入了国际化的语境中,编程语言也与时俱进地增长了对国际化的诉求。
Unicode(译作统一码、万国码)编码标准在 1994 年发布,随后逐步被主流的编程语言所接纳。到目前为止,至少有 73 种编程语言支持 Unicode 变量名(数据依据:https://rosettacode.org/wiki/Unicode_variable_names)。
2007 年,当 Python 正在设计划时代的 3.0 版本时,官方也考虑了对 Unicode 编码的支持,于是,诞生了重要的《PEP 3131 -- Supporting Non-ASCII Identifiers》。
出处:https://www.python.org/dev/peps/pep-3131
事实上,除了我们最关心的中文,Unicode 字符集还包含非常非常多的内容。
在对变量命名时,下面这些用法都是可行的(谨慎使用,如若被打,本猫概不负责……):
>>> ψ = 1 >>> Δ = 1 >>> ಠ_ಠ = "hello"
综上所述,某些 Python 书籍中关于变量命名规则的内容已经过时了,不应该被其所误导!
Python 3 作为一门面向现代化/国际化的语言,对于 Unicode 编码有很好的支持。至于该不该在项目中使用中文给标识符命名,那就是另外的问题啦……
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20