京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:Python猫
作者:豌豆花下猫
最近,我在翻阅两本比较新的 Python 书籍时,发现它们都犯了一个严重的低级错误!
这两本书分别是《Python编程:从入门到实践》和《父与子的编程之旅》,它们都是畅销书,都在 2020 年 10 月出了新版本,都使用 Python3.7+ 版本的语法。
然而,在关于变量的命名规则部分,它们犯下了一样的错误,即还在使用 Python2 时代的那套说辞,误以为命名仅仅支持“字母、数字和下划线”的组合。事实上,Python3.x 已经支持全面 Unicode 编码,比如支持使用中文作为变量名。
>>> 姓名 ="Python猫" >>> print(f"我是{姓名},欢迎关注!")
我是Python猫,欢迎关注!
由于我手头上没有其它样本,所以,我不确定有多少新版的书籍还在使用老的规则。但是,翻译类的书籍大概率都会有这样的问题,另外,有些不严谨的国内书籍,也可能因为借鉴了过时的材料而犯错。
如此一来,恐怕有些新接触 Python 的同学,就会形成错误的认识。虽然这可能不会造成严重的问题,但是它终归是一个应该避免而且很容易就能避免的问题。
因此,我觉得这个话题值得聊一聊。
在编程语言中有一个很常见的概念,即标识符(identifier),通常又会称之为名字(name),用于标识出变量、常量、函数、类、符号等实体的名字。
在定义标识符时,有一些必须要考虑的基本规则:
对于第一个问题,大多数的编程语言在早期版本都遵循这条规则:标识符由字母、数字和下划线组成,并且不能以数字为开头。 少数的编程语言有例外,还支持使用$、@、%等特殊符号(例如PHP、Ruby、Perl等等)。
Python 的早期版本,确切地说是 3.0 之前的版本,就遵循以上的命名规则。下面是官方文档中的描述:
identifier ::= (letter|"_") (letter | digit | "_")* letter ::= lowercase | uppercase lowercase ::= "a"..."z" uppercase ::= "A"..."Z" digit ::= "0"..."9"
出处:https://docs.python.org/2.7/reference/lexical_analysis.html#identifiers
但是,这条规则从 3.0 版本起,就被打破了。最新的官方文档已经变成了这样:
出处:https://docs.python.org/3/reference/lexical_analysis.html#identifiers
随着互联网的普及,各国语言进入了国际化的语境中,编程语言也与时俱进地增长了对国际化的诉求。
Unicode(译作统一码、万国码)编码标准在 1994 年发布,随后逐步被主流的编程语言所接纳。到目前为止,至少有 73 种编程语言支持 Unicode 变量名(数据依据:https://rosettacode.org/wiki/Unicode_variable_names)。
2007 年,当 Python 正在设计划时代的 3.0 版本时,官方也考虑了对 Unicode 编码的支持,于是,诞生了重要的《PEP 3131 -- Supporting Non-ASCII Identifiers》。
出处:https://www.python.org/dev/peps/pep-3131
事实上,除了我们最关心的中文,Unicode 字符集还包含非常非常多的内容。
在对变量命名时,下面这些用法都是可行的(谨慎使用,如若被打,本猫概不负责……):
>>> ψ = 1 >>> Δ = 1 >>> ಠ_ಠ = "hello"
综上所述,某些 Python 书籍中关于变量命名规则的内容已经过时了,不应该被其所误导!
Python 3 作为一门面向现代化/国际化的语言,对于 Unicode 编码有很好的支持。至于该不该在项目中使用中文给标识符命名,那就是另外的问题啦……
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05