京公网安备 11010802034615号
经营许可证编号:京B2-20210330
随着高学历普遍化,各行各业整体素质在稳步攀升,像外卖小哥的队伍就拥有7万硕士、21万本科生。
同样,保姆也不再是传统意义上普通的家政员,已出现一批素质偏高,学习能力强,具备一技之长的保姆,其学历均在本科以上,能力已接近“管家”。
图片来源:新浪微博
这不,微博爆出了一则热搜,上海某业主招聘女性生活助理,年薪给到了50W-100W之间。所谓“水涨船高”,工资上去了,硬件要求自然也高。
正如前阵子盛传的名校硕士回家后欢欢喜喜当育儿嫂,看来现今“职业无贵贱”的观念早已深入人心。
不过,无论是保姆,还是月嫂、亦或是育儿员等,都是有明确一技之长的岗位,学历、背景、能力只是围绕着这项“一技之长”锦上添花而已。
图片来源:新浪微博
然而,有网友一针见血指出,多数高端家政岗更青睐女性,男性在这个热门的领域似乎都不怎么具竞争优势,小编为此心疼男性几秒……
话说回来,当下井喷式发展的热门行业国内挺多,无论是AI,还是大数据、云计算、区块链等,性别上都没太大局限,适合逻辑、学习等能力都强的男性。
今天,我们就以数据分析为例,给大家介绍一个男女都适合的高薪行业:数据分析。
——行业前景
企业想在竞争激烈的市场中胜出,决策速度和反馈效率尤为重要。数据透过什么方法,才能快速转变成决策依据,是现代企业迫切且不可避免的问题。
数据分析在企业决策中散发出极大魅力,受到从业者的追捧。同时,巨大的人才缺口让理性数据分析,辅助实战经验的新型数据分析人才供不应求。
不仅如此,数据分析入门科学,行业适应性强,零基础也可轻松掌握,而一旦具备了过硬的业务及分析操作能力,拿高薪就并非难事。
——什么是数据分析
为提取有用信息,并形成最终结论,而对大量数据进行详细研究和概括总结的过程,我们称之为数据分析。
其实,往简单里说,就是复杂、乱、多的数据,无论是文本、音乐还是文字、数字等,通过处理和分析,将其变成知识、智慧的方法。
随着大数据时代的来临,拥有数据分析思维的人,倍受社会各界人士的青睐。同时,以这种思维为基础,逐渐形成了一个热门产业。
各大企业的数字化进程不断升华,对数据分析的需求量也越来越大,供不应求的市场导向,让其成为新风口行业,且从业者薪资偏高。
——给大家举个例子
如果你是运营良好的淘宝服装店店长,应该会及时掌握很多数据,如:一天销售了多少件商品、挣多少钱、哪个品牌销售多、哪个品牌出货少、哪个商品需要补货了、哪种款式和颜色受欢迎等,从而便于你做出策略调整,保持良性增长。
这是了解情况。
数据积累到一定程度,你会开始发现规律,如:某类人群喜欢买圆领深色服装,而另一类人喜欢宽松浅色服装,购买了A品牌的人会再买B品牌短裤,浏览C页面的顾客会对D商品产生兴趣。
这是数据挖掘。
得到信息后的你,会试着将圆领深色服装推销给某类人,将宽松浅色服装推销给另一类人,将B品牌短裤销售链接添加在A品牌商品页中,将D商品促销优惠加到C页面,从而让商品销售量大幅提升。
这是发现规律。
一段时间后,你又发现了E品牌被浏览2-3次就能售出一件,于是想方设法来提高E品牌的点击次数,通过浏览量的趋势,大致来预测未来一段时间销量变化的情况。
这是预测未来。
——数据分析要具备啥能力?
那么,聊了这么多的数据分析,对于进入数据分析行业,成为该领域的佼佼者,我们应该学习并优化自己哪些方面呢?这里小编列出几个方面,仅供大家参考!
① 基础知识
在数学知识的基础上,数据分析还引入了统计学,包含但不局限于数学、线性代数、统计学等,这些都是决定数据分析职业发展高度的基石,希望大家能好好掌握。
初级数据分析师仅需要学习描述统计相关的内容和公式,但如果想更进一步进阶,就要掌握统计算法,甚至机器学习算法等更多知识,算法相关的工作则要对高数进行深入学习。
② 分析工具
Excel是最容易入门,且运用最广的数据分析工具,所以其函数、数据透视表和公式请稳打稳扎。另外,具备SPSS等专业统计分析技能更好。
另外,只要你是和数据相处,就不得不接触数据库,所以要学SQL基本的查、改、增、删等的方法。
随着数据的增长,你可能会需要用到Python或R等技能来更高效的处理数据,有些行业还会需要SAS或其他工具,需根据实际情况来选择。
③ 业务/行业/商业知识
从各种操作中,我们可以看到脱离业务的纯数据分析不具任何意义,想成为优秀的数据分析师, 首先必须了解业务。
熟悉业务后再去获取需要的数据,对数据进行业务分析,制定出相应方案,这才是真香。
④ 跨部门沟通协调能力
公司由各个部门组成,数据分析自然就离不开和很多部门,如业务部、技术部等的沟通,要将得出的报告展示人前,并说服别人接受,数据分析师就必须具备良好的协调沟通能力。
⑤ 持续且快速的学习力
学习力是很重要的素质之一,无论数据分析还是其他岗位,都需有持续、快速学习的能力,学习各种新知识和新技能。
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20