京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS统计分析案例:独立样本T检验
独立样本T检验,常用于两组数据均值的比较,比如,男性和女性在购物消费上是不是一致,类似这样的问题。
Excel表格用户可能会说,这个简单,我做一个柱形图不就可以了吗?
比如这样:
右侧柱子代表女性消费,左侧柱子代表男性消费,对比很明显嘛,女性购物消费高于男性。
看到这里,SPSS用户只能默默路过,然后回到家迅速跑一个独立样本t检验,验证一下统计学意义,这才算放心了。
看一个案例吧
有一组银行用户的贷款记录,变量包括人口统计信息,以及用户的负债情况。我们想知道有拖欠记录和无拖欠记录的用户在负债收入比指标上有无差异。
首先通过柱形图,从可视化的角度去直观考察。
菜单栏依次选择 【图形】→【旧对话框】→【条形图】,选择【简单】,勾选【个案组摘要】,调出柱图主界面。
首先将分组变量“是否拖欠”移入【类别轴】,接着勾选【其他统计(例如平均值)】,将变量“负债收入比”移入右侧框内,点击下方【更改统计】按钮,在弹出界面中选择【值的平均值】。其他设置不动,执行。
图形来看,对比是非常明显的,有拖欠记录用户的负债收入比平均较无拖欠用户高出6.05。
那么,这样的差异,有没有统计学意义呢?用独立样本T检验来回答。
菜单栏中依次选择【分析】→【 比较平均值】→【 独立样本T检验】,打开独T主面板。
将“负债收入比”移入【检验变量框】内,将“是否拖欠”移入【分组变量】,点击下方【定义组】按钮,和“是否拖欠”相对应,组1输入数字1,组2输入数字0,分别对应拖欠和未拖欠。
主面板右上方点击【选项】按钮,置信区间95%,点击【继续】。并要求执行独立T检验。
表1,SPSS软件输出是否拖欠两组用户负债收入比的均值和标准差。
表2是独立样本T检验最终的检验结果。
解读第一步,首先观察左侧3列,读取方差齐次检验的结果,显著性值小于0.05,表明两组用户负债收入比的方差不齐次,它指示接下来读取第二步中,应选择第二行方差不齐的T检验结果。来看第6列,显著性值小于0.05,表明两组用户之间负债收入比是有显著差异。
综合前面柱形图的结果,可以说明负债收入比在是否拖欠两组用户中有明显差异,拖欠用户的负债收入比更高。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12