
SPSS统计分析案例:独立样本T检验
独立样本T检验,常用于两组数据均值的比较,比如,男性和女性在购物消费上是不是一致,类似这样的问题。
Excel表格用户可能会说,这个简单,我做一个柱形图不就可以了吗?
比如这样:
右侧柱子代表女性消费,左侧柱子代表男性消费,对比很明显嘛,女性购物消费高于男性。
看到这里,SPSS用户只能默默路过,然后回到家迅速跑一个独立样本t检验,验证一下统计学意义,这才算放心了。
看一个案例吧
有一组银行用户的贷款记录,变量包括人口统计信息,以及用户的负债情况。我们想知道有拖欠记录和无拖欠记录的用户在负债收入比指标上有无差异。
首先通过柱形图,从可视化的角度去直观考察。
菜单栏依次选择 【图形】→【旧对话框】→【条形图】,选择【简单】,勾选【个案组摘要】,调出柱图主界面。
首先将分组变量“是否拖欠”移入【类别轴】,接着勾选【其他统计(例如平均值)】,将变量“负债收入比”移入右侧框内,点击下方【更改统计】按钮,在弹出界面中选择【值的平均值】。其他设置不动,执行。
图形来看,对比是非常明显的,有拖欠记录用户的负债收入比平均较无拖欠用户高出6.05。
那么,这样的差异,有没有统计学意义呢?用独立样本T检验来回答。
菜单栏中依次选择【分析】→【 比较平均值】→【 独立样本T检验】,打开独T主面板。
将“负债收入比”移入【检验变量框】内,将“是否拖欠”移入【分组变量】,点击下方【定义组】按钮,和“是否拖欠”相对应,组1输入数字1,组2输入数字0,分别对应拖欠和未拖欠。
主面板右上方点击【选项】按钮,置信区间95%,点击【继续】。并要求执行独立T检验。
表1,SPSS软件输出是否拖欠两组用户负债收入比的均值和标准差。
表2是独立样本T检验最终的检验结果。
解读第一步,首先观察左侧3列,读取方差齐次检验的结果,显著性值小于0.05,表明两组用户负债收入比的方差不齐次,它指示接下来读取第二步中,应选择第二行方差不齐的T检验结果。来看第6列,显著性值小于0.05,表明两组用户之间负债收入比是有显著差异。
综合前面柱形图的结果,可以说明负债收入比在是否拖欠两组用户中有明显差异,拖欠用户的负债收入比更高。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26