
SPSS实例教程:二分类Logistic回归
某呼吸内科医生拟探讨吸烟与肺癌发生之间的关系,开展了一项成组设计的病例对照研究。选择该科室内肺癌患者为病例组,选择医院内其它科室的非肺癌患者为对照组。通过查阅病历、问卷调查的方式收集了病例组和对照组的以下信息:性别、年龄、BMI、COPD病史和是否吸烟。变量的赋值和部分原始数据见表1和表2。该医生应该如何分析?
表1. 肺癌危险因素分析研究的变量与赋值
表2. 部分原始数据
2、对数据结构的分析
该设计中,因变量为二分类,自变量(病例对照研究中称为暴露因素)有二分类变量(性别、BMI和是否吸烟)、连续变量(年龄)和有序多分类变量(COPD病史)。要探讨二分类因变量与自变量之间的关系,应采用二分类Logistic回归模型进行分析。
在进行二分类Logistic回归(包括其它Logistic回归)分析前,如果样本不多而变量较多,建议先通过单变量分析(t检验、卡方检验等)考察所有自变量与因变量之间的关系,筛掉一些可能无意义的变量,再进行多因素分析,这样可以保证结果更加可靠。即使样本足够大,也不建议直接把所有的变量放入方程直接分析,一定要先弄清楚各个变量之间的相互关系,确定自变量进入方程的形式,这样才能有效的进行分析。
本例中单变量分析的结果见表3(常作为研究报告或论文中的表1)。
表3. 病例组和对照组暴露因素的单因素比较
单因素分析中,病例组和对照组之间的差异有统计学意义的自变量包括:性别、COPD病史和是否吸烟。
此时,应当考虑应该将哪些自变量纳入Logistic回归模型。一般情况下,建议纳入的变量有:1)单因素分析差异有统计学意义的变量(此时,最好将P值放宽一些,比如0.1或0.15等,避免漏掉一些重要因素);2)单因素分析时,没有发现差异有统计学意义,但是临床上认为与因变量关系密切的自变量。
本研究中,年龄和BMI与因变量没有统计学关联。但是,临床认为年龄也是肺癌发生的可能危险因素,因此Logistic回归模型中,纳入以下自变量:性别、年龄、COPD病史和是否吸烟。
此外,对于连续变量,如果仅仅是为了调整该变量带来的混杂(不关心该变量的OR值),则可以直接将改变量纳入Logistic回归模型;如果关心该变量对因变量的影响程度(关心该变量的OR值),一般不直接将该连续变量纳入模型,而是将连续变量转化为有序多分类变量后纳入模型。 这是因为,在Logistic回归中直接纳入连续变量,那么对于该变量的OR值的意义为:该变量每升高一个单位,发生结局事件的风险变化(比如年龄每增加1岁,患肺癌的风险增加1.02倍)。这种解释在临床上大多数是没有意义的。
3、SPSS分析方法
(1)数据录入SPSS
(2)选择Analyze→Regression→Binary Logistic
(3)选项设置
1)主对话框设置:将因变量cancer送入Dependent框中,将纳入模型的自变量sex, age, BMI和COPD变量Covariates中。本研究中,纳入age变量仅仅是为了调整该变量带来的混杂(不关心该变量的OR值),因此将age直接将改变量纳入Logistic回归模型。
对于自变量筛选的方法(Method对话框),SPSS提供了7种选择,使用各种方法的结果略有不同,读者可相互印证。各种方法之间的差别在于变量筛选方法不同,其中Forward: LR法(基于最大似然估计的向前逐步回归法)的结果相对可靠,但最终模型的选择还需要获得专业理论的支持。
2)Categorical设置:该选项可将多分类变量(包括有序多分类和无序多分类)变换成哑变量,指定某一分类为参照。本研究中,COPD是多分类变量,我们指定“无COPD病史”的研究对象为参照组,分别比较“轻/中度”和“重度”组相对于参照组患肺癌的风险变化。
点击Categorical→将左侧Covariates中的COPD变量送入右侧Categorical Covariates中。点击Contrast右侧下拉菜单,选择Indicator(该下拉菜单内的选项是几种与参照比较的方式,Indicator方式最常用,其比较方法为:第一类或最后一类为参照类,每一类与参照类比较)。
在Reference Category的右侧选择First(表示选择变量COPD中,赋值最小的,即“0”作为参照。如果选择Last则表示以赋值最大的作为参照)→点击Change→点击Continue。
3)Options设置中,勾选如下选项及其意义:
Hosmer-Lemeshow goodness-of-fit:检验模型的拟合优度;
CI for exp(B):结果给出OR值的95%可信区间;
Display→At last step:仅展示变量筛选的最后一步结果。
→Continue→回到主界面→OK
4、结果解读
Logistic回归的结果给出了很多表格,我们仅需要重点关注三个表格。
(1)Omnibus Tests of Model Coefficients:模型系数的综合检验。其中Model一行输出了Logistic回归模型中所有参数是否均为0的似然比检验结果。P<0.05表示本次拟合的模型中,纳入的变量中,至少有一个变量的OR值有统计学意义,即模型总体有意义。
(2)Hosmer and Lemeshow Test:是检验模型的拟合优度。当P值不小于检验水准时(即P>0.05),认为当前数据中的信息已经被充分提取,模型拟合优度较高。
(3)Variables in the Equation:
1)本次统计过程中筛选变量的方式是Forward: LR法,Variables in the Equation表格中列出了最终筛选进入模型的变量和其参数。其中Sig.一列表示相应变量在模型中的P值,Exp (B)和95% CI for EXP (B)表示相应变量的OR值和其95%可信区间。
对于sex, smoke这两个二分类变量,OR值的含义为:相对于赋值较低的研究对象(sex赋值为“0”的为女性;smoke赋值为“0”的为不吸烟),赋值较高的研究对象(男性、吸烟者)发生肺癌的风险为是多少(2.308倍、3.446倍)。
2)对于多分类变量COPD,设置中以“0”组作为参照,则得到的结果是“1”组、“2”组分别对应于“0”组的OR值。在Logistic回归中,设置过哑变量的多分类变量是同进同出的,即只要有一组相对于参照组的OR值有统计学意义,则该变量的全部分组均纳入模型。COPD变量的第一行没有OR值,其P值代表该变量总体检验的差异有统计学意义(即至少有一组相对于参照组的OR值有统计学意义)。
3)本研究中的COPD变量以“0”组作为参照, 因此COPD (1)行的参数中给出了“1”相对于“0”组的OR值和P值,而在COPD (2)行的参数中给出了“2”组相对于“0”组的OR值和P值。数据分析培训
4)Constant为回归方程的截距,在模型中一般没有实际意义,大家可不必关注。
5、撰写结论
本研究发现,85例肺癌患者中,吸烟者67例(78.8%);259例非肺癌患者中,吸烟者153例(59.1%),肺癌患者和非肺癌患者中的吸烟率的差异有统计学意义(χ2=10.829, P<0.01)。Logistic回归模型在调整了性别和COPD病史后,吸烟者相对于不吸烟者,发生肺癌的风险增加(OR=3.45, 95% CI: 1.86-6.40)。
多变量分析的结果见表4(常作为研究报告或论文中的表2)。
表4. 肺癌危险因素的Logistic回归分析
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18