京公网安备 11010802034615号
经营许可证编号:京B2-20210330
多维度拆解是数据分析里最重要的一种分析方法,通过不同的维度去观察同一组数据,从而洞查数据异动背后的原因。
多维度拆解的适用场景,对单一指标的构成或比例进行拆解分析,这种场景往往适用于像分栏目的播放量和新老用户比例等等。
对业务流程进行拆解分析,一般适用于从不同渠道浏览到添加购物车到购买的这种全局的转化流程,像有些跨区域的产品,不同的区域活动的效果自然不同,这时候我们就可以从不同省份的活动情况来进行分析。
对需要还原行为发生的场景时进行拆解分析,比较适用于一些直播类的产品,比如需要去观察打赏主播的等级、性别,来自哪个频道进行多维度的拆解。
案例解析
举个栗子:我们做少儿英语培训的产品,进行了一波推广营销活动后,想看下推广效果怎么样,如何查看呢? 首先我们从【进入网站事件】进行分析: 第一个维度:从用户性别进行拆分,由下图可以看出,进入网站的用户61%都是女性。相比孩子的父亲,母亲更关注少儿英语培训,这也跟大部分家庭由母亲带孩子有关。
第二个维度:从操作系统进行拆分,可以看出大部分用户来自iOS用户。据相关数据统计,女性用户更喜欢用苹果设备,这也与前面的性别分析是一致的。
第三个维度:按渠道来源进行拆分,由下图可以看出42%的用户来自于订阅号。这是因为我们在活动开始前做了一场公开课,并在订阅号上做了相关推送。
第四个维度:从城市等级这个维度进行拆分,咱们的产品定位是中等偏高收入的人群,这类用户主要集中在一线城市,这也符合我们产品目前的定位。
第五个维度:从进入网站这个事件按新老用户进行拆分,由下图可以发现,每天的DAU在过去的一周内没有发生什么波动,但是按新老用户拆分后发现,随着这一波的推广,咱们的新增用户数一直在涨的,但是DAU却没有啥变化,这是因为老用户一直在往下跌,这一涨一跌交集之后,DAU的趋势没有啥变化,这背后反映的情况是:引入了大量的新用户,但是没有成功的留住他们。
经过推广活动之后,注册-下单-支付的这个流程的转化情况如下图,那么从哪些方面提升转化率呢?我们就可以用多维度拆解的方法,对这个业务流程进行拆解。
首先从渠道来源进行拆解分析,由下图可以看出,百度来的流量虽然不少,但是下单和支付的转化率相比其他渠道还是挺低的。那像这种情况咱们可以加大其他渠道的广告投放力度,减少百度的投放力度。
其次从城市进行拆解分析,在郑州这座城市用户下单的意愿不强烈,这表明我们的产品可能不适合二级城市(新一级城市)的用户。
最后从操作系统拆解分析,由下图可以发现,iOS用户支付能力比较强,这也跟我们的产品大部分是女性用户有关。
基于以上拆解的案例可以看出,多维度拆解法的运作原理非常简单:指标或是业务流程按照多维度拆分,来观察数据的变动,从而找出问题的原因。
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04