京公网安备 11010802034615号
经营许可证编号:京B2-20210330
mysql性能优化就是通过合理安排资源,调整系统参数使mysql运行更快、更节省资源。mysql性能优化包括查询速度优化、数据库结构优化、mysql服务器优化等。
优化简介
优化数据库是数据库管理员和数据库开发人员的必备技能。MySQL优化,一方面是找出系统瓶颈,提高MySQL数据库整体的性能;另一方面需要合理的结构设计和参数调整,以提高用户操作响应的速度;同时还要尽可能节省系统资源,以便系统可以提供更大负荷的服务。
例如,通过优化文件系统,提高磁盘I/O的读写速度;通过优化操作系统调整策略,提高MySQL在高负荷情况下的负载能力;优化表结构、索引、查询语句等使查询响应更快。
在MySQL中可以使用SHOW STATUS语句查询一些MySQL数据库的性能参数。
语法:
show status like 'value';
其中,value是要查询的参数值,常用的性能参数如下:
示例:查询MySQL服务器的连接次数
优化查询
查询是数据库中最频繁的操作,提高查询速度可以有效地提高MySQL数据库的性能。
分析查询语句
通过对查询语句的分析,可以了解查询语句的执行情况,找出查询语句执行的瓶颈,从而优化查询。
MySQL中提供了EXPLAIN语句和DESCRIBE语句来分析查询语句。
语法:
EXPLAIN/DESCRIBE [EXTENDED] SELECT select_options
示例:
索引对查询速度的影响
MySQL中提高性能的一个有效方式就是对数据表设计合理的索引。索引提供了高效数访问数据的方法。并且可以加快查询的速度,因此,索引对查询的速度有着至关重要的影响。
索引简介
索引是对数据库表中一个或多个字段的值进行排序的一种结构,使用索引可提高数据库中特定数据的查询速度。
索引的意义
索引是一个单独的、存储在磁盘上的数据库结构,包含着对数据表里所有记录的引用指针。使用索引可以快速找出在某个或多个字段中有特定值的行。
如果不使用索引,MySQL必须从第一条记录开始检索表中的每一条记录,直到找出相关的行。那么表越大,查询数据所花费的时间就越多。
如果在表中查询的字段有索引,MySQL能够快速到达一个位置去检索数据文件,而不需要再去查看所有数据,那么将会节省很大一部分查询时间。
比如说emp表中1W个员工的记录,要查询工号为7566的员工信息select * from emp where empno=7566,如果没有索引,服务器会从表中第一条记录开始,一条条往下遍历,直到找到empno=7566的员工信息。
如果在empno这个字段上创建索引,就可以索引文件里面找empno=7566这一行的位置,而不需要再遍历1W条记录了。
索引的优缺点
所有MySQL的字段类型都可以添加索引,但是索引也不是越多越好,而是要根据业务数据合理的使用。
优点
缺点
创建索引的原则
索引设计不合理或缺少索引都会对数据库和应用程序的性能造成障碍,高效的索引对于获得良好的性能非常重要。
需要创建索引的情况
不需要创建索引的情况
索引的结构
索引是在存储引擎中实现的,使用不同的存储引擎,所支持的索引也是不同的。
在mysql中常用两种索引结构BTree和Hash,两种算法检索方式不一样,对查询的作用也不一样。
MyISAM和InnoDB存储引擎只支持BTREE索引,MEMORY/HEAP存储引擎支持HASH和BTREE索引。
MySQL的InnoDB存储引擎是支持hash索引的,不过我们必须启用,hash索引的创建由InnoDB存储引擎自动优化创建,我们干预不了。
索引的类型
索引的类型可以分类以下几种:
索引的操作
实际上索引也是一张表,创建索引时,数据库管理系统会在本地磁盘建立索引文件,里面保存了索引字段,并指向实体表的记录。
创建索引
create index <索引名> on <表名>(<字段名>);
自动创建索引
示例:emp表中的job添加普通索引
mysql> create index job_index on emp(job);
查看索引
语法:
show index from <表名>;
示例:查看emp表中的索引
使用索引
在查询语句中使用索引会大大提升数据的检索速度。 示例:
删除索引
删除索引只是删除了表中的索引对象,表中的数据不会被删除。 语法:
drop index <索引名> on <表名>;
示例:
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24