
作者:小伍哥
来源:AI入门学习
上次出了一个在网站「Flourish」画动态条形图的文章【动态条形图视频教程】,需要登录网址很多人可能觉得不方便,现在有大佬出了个python包,只需几行代码就能搞定动态条形图,非常强大,给大家分享下。
一、前期准备工作
1、官方参考文档
GitHub :https://github.com/dexplo/bar_chart_race
说明文档:https://www.dexplo.org/bar_chart_race/
2、软件安装(该安装方法只能安装0.1版本)
pip install bar_chart_race conda install -c conda-forge bar_chart_race
0.2版本需要到github安装
压缩包解压到软件安装目录的/site-packages目录下,利用命令行安装即可
3、安装ffmpeg、ImageMagick
ffmpeg包:不然无法输出 mp4/m4v/mov/等格式的视频,该包比较复杂,需要配置变量环境,具体操作可以看看这个博客:
https://baijiahao.baidu.com/s?id=1660327134602942057&wfr=spider&for=pc
ImageMagick包:如果你要创建GIF,需要安装这个包ImageMagick,安装方法与上述类似。
二、官方数据画图
上述准备都做好了,那就可以开始画图了,利用官方提供的数据,直接加载就可以,我的数据下载没成功,所以自己上传数据绘图,等下回讲怎么自己上传数据。
#加载包 import bar_chart_race as bcr #下载数据 df = bcr.load_dataset('covid19_tutorial') #生成GIF图像 bcr.bar_chart_race(df, 'covid19_horiz.gif') #生成MP4 bcr.bar_chart_race(df, 'covid19_horiz.MP4')
生成的GIF
生成的MP4
三、自己的数据画图
如果是自己的数据,要进行一定的处理,达到画图格式,不然会报错。
#读取数据 df = pd.read_csv('data.csv') #格式处理,需要把日期date转换成索引,不能作为单独一列 df = df.set_index(keys='date') 作者也提供了两个处理数据的函数 bcr.prepare_wide_data bcr.prepare_long_data
原始数据
处理后数据(date转换成了索引)
四、图形美化
作者还提供了很多参数,对图形进行调整和美化,输出的图形更漂亮
1、横转纵 Vertical bars
#orientation='v',.gif变成MP4即可输出视频 bcr.bar_chart_race(df, 'covid19_horiz.gif', orientation='v')
2、升序排序
# 排序方式,sort='asc'-升序 bcr.bar_chart_race(df, 'covid19_horiz.gif', sort='asc')
3、类目数限制,此处设置为最多出现6条
# 设置最多能显示的条目数 n_bars=6 bcr.bar_chart_race(df, 'covid19_horiz.gif', n_bars=6)
4、设置展示类目
# 选取如下5个国家的数据 fixed_order bcr.bar_chart_race(df, 'covid19_horiz.gif', fixed_order=['Iran', 'USA', 'Italy', 'Spain', 'Belgium'])
5、固定坐标轴
#设置数值的最大值,固定数值轴fixed_max bcr.bar_chart_race(df, 'covid19_horiz.gif', fixed_max=True)
6、改变图像帧数
#图像帧数,数值越小,越不流畅。越大,越流畅。默认为10比较流畅,改为3就有些卡顿了 bcr.bar_chart_race(df, 'covid19_horiz.gif', steps_per_period=3)
7、设置帧率,默认为500ms
# 设置20帧的总时间,此处为200ms bcr.bar_chart_race(df, 'covid19_horiz.gif', steps_per_period=20, period_length=200)
8、设置每帧增加的标签时间,默认为False
# 输出gif bcr.bar_chart_race(df, 'covid19_horiz.gif', interpolate_period=True)
9、绘图属性设置
# figsize-设置画布大小,默认(6, 3.5) # dpi-图像分辨率,默认144 # label_bars-显示柱状图的数值信息,默认为True # period_label-显示时间标签信息,默认为True # title-图表标题 bcr.bar_chart_race(df, 'covid19_horiz.gif', figsize=(5, 3), dpi=100, label_bars=False, period_label={'x': .99, 'y': .1, 'ha': 'right', 'color': 'red'}, title='COVID-19 Deaths by Country')
10、配置标签文字大小
# bar_label_size-柱状图标签文字大小 # tick_label_size-坐标轴标签文字大小 # title_size-标题标签文字大小 bcr.bar_chart_race(df, 'covid19_horiz.gif', bar_label_size=4, tick_label_size=5, title='COVID-19 Deaths by Country', title_size='smaller')
11、全局字体属性设置
# shared_fontdict-全局字体属性 bcr.bar_chart_race(df, 'covid19_horiz.gif', title='COVID-19 Deaths by Country', shared_fontdict={'family': 'Helvetica', 'weight': 'bold', 'color': 'rebeccapurple'})
12、透明度,边框等设置
# bar_kwargs-条形图属性设置参数 bcr.bar_chart_race(df, 'covid19_horiz.gif', bar_kwargs={'alpha': .2, 'ec': 'black', 'lw': 3})
13、日期格式设置
# 设置日期格式,默认为'%Y-%m-%d' bcr.bar_chart_race(df, 'covid19_horiz.gif', period_fmt='%b %-d, %Y')
14、改日期标签为数值格式
# 设置日期标签为数值 bcr.bar_chart_race(df.reset_index(drop=True), 'covid19_horiz.gif', interpolate_period=True, period_fmt='Index value - {x:.2f}')
15、添加汇总统计
#设置文本位置、数值、大小、颜色等 def summary(values, ranks): total_deaths = int(round(values.sum(), -2)) s = f'Total Deaths - {total_deaths:,.0f}' return {'x': .99, 'y': .05, 's': s, 'ha': 'right', 'size': 8} # 添加文本 bcr.bar_chart_race(df, 'covid19_horiz.gif', period_summary_func=summary
16、添加垂直条参考线(平均值、分位数等)
# 设置垂直条数值,分位数 def func(values, ranks): return values.quantile(.9) # 添加垂直条 bcr.bar_chart_race(df, 'covid19_horiz.gif', perpendicular_bar_func=func)
17、设置柱状图颜色
'dark12' is the default colormap. If there are more than 10 columns, then the default colormap will be 'dark24'
# 设置柱状图颜色 bcr.bar_chart_race(df, 'covid19_horiz.gif', cmap='accent')
18、颜色不重复
#filter_column_colors保证颜色不重复 bcr.bar_chart_race(df, 'covid19_horiz.gif', cmap='accent', filter_column_colors=True)
19、中文支持配置
中文配置只需在第三方库的_make_chart.py文件中,加入如下三行代码。
#中文显示 plt.rcParams['font.sans-serif'] = ['SimHei'] #Windows plt.rcParams['font.sans-serif'] = ['Hiragino Sans GB'] #Mac plt.rcParams['axes.unicode_minus'] = False
20、自定义颜色
此外通过在「_colormaps.py」文件中添加颜色信息,经cmap引用,即可自定义配置颜色。
colormaps = { "new_colors": [ '#ff812c', '#ff5a5a', '#00c5d2', '#a64dff', '#4e70f0', '#f95dba', '#ffce2b']}
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16