
作者:刘早起
来源:早起Python
大家好,又到了python办公自动化专题。今天讲的是各位一定会接触到的PDF转换,关于各种格式的文件转换为PDF有很多第三方工具与网站可以实现,但是使用Python的好处不仅可以批量转换,同时一旦脚本写完了以后就可以一键执行,彻底解放双手,那么本文就来盘一盘如何使用Python来将Word/Excel/PPT/Markdown/Html等各种格式的文件转换为PDF!
Word转PDF
Word转PDF应该是最常见的需求了,毕竟使用PDF格式可以更方便展示文档,虽然在Word中可以直接导出为PDF格式,但是使用Python可以批量转换,更加高效。
目前在Python中针对Word转换为PDF的库有很多,比如win32就可以调用word底层vba,将word转成pdf,或者comtypes等,但是这些常用的库仅能在Windows机器上运行,所以为了照顾mac用户本文使用一个比较小众的库docx2pdf,看名字就能知道这是专门用于word转pdf,安装很简单
pip install docx2pdf
使用也比win32等库更简洁,一行代码导入一行代码转换即可
from docx2pdf import convert convert("input.docx", "output.pdf")
但是有人就会说虽然简单,但是这个操作word本身就可以完成,好的接下来放大招,我们可以使用下面的代码找到当前或者指定文件夹下的全部word文件
#查找当前目录下的全部word文件 import os import glob from pathlib import Path path = os.getcwd() + '/' p = Path(path) #初始化构造Path对象 FileList=list(p.glob("**/*.docx"))
接下来只要写一个循环就可以将该目录下的全部word一次性转换为PDF
for file in FileList: convert(file,f"{file}.pdf")
就这样,不到10行代码,只要一秒,指定文件夹中5份Word就轻松转换为PDF,现在还能使用我们之前自动化系列文章写过的批量合并PDF结合一键合并这5份PDF!
Excel转PDF
Excel转PDF可能平时用的不多,但是作为Office全家桶中的重要工具,并且转换完的表格可以复制所以我们也讲一下。使用到的工具既不是常用的openpyxl也不是pandas,而是另一个专门用于处理PDF的库fpdf
import pandas as pd import numpy as np df_1 = pd.DataFrame(np.random.randn(10, 2), columns=list('AB'))
为了方便讲解我们使用Pandas和NumPy来创建一个示例数据文件,当然也可以使用从本地读取
现在可以使用下面的代码将这个表格转换为PDF
from fpdf import FPDF pdf = FPDF() pdf.add_page() pdf.set_xy(0, 0) pdf.set_font('arial', 'B', 14) pdf.cell(60) pdf.cell(70, 10, 'Excel to PDF', 0, 2, 'C') pdf.cell(-40) pdf.cell(50, 10, 'Index Column', 1, 0, 'C') pdf.cell(40, 10, 'A', 1, 0, 'C') pdf.cell(40, 10, 'B', 1, 2, 'C') pdf.cell(-90) pdf.set_font('arial', '', 12) for i in range(0, len(df_1)): col_ind = str(i) col_a = str(df_1.A.iloc[i]) col_b = str(df_1.B.iloc[i]) pdf.cell(50, 10, '%s' % (col_ind), 1, 0, 'C') pdf.cell(40, 10, '%s' % (col_a), 0, 0, 'C') pdf.cell(40, 10, '%s' % (col_b), 0, 2, 'C') pdf.cell(-90) pdf.output('Excel2PDF.pdf', 'F')
,其实思路和openpyxl类似,遍历每一个单元格并写入数据,只不过现在是往PDF文件中写入。
PPT转PDF
本节介绍一下PPT如何转换为PDF,但是我搜了一大圈都没有MAC用户可以实现的方法,所以只能针对Windows去操作,使用到的就是在word2pdf中讲到的comtypes
import sys import os import comtypes.client #设置路径 input_file_path = sys.argv[1] output_file_path = sys.argv[2] input_file_path = os.path.abspath(input_file_path) output_file_path = os.path.abspath(output_file_path) #创建PDF powerpoint = comtypes.client.CreateObject("Powerpoint.Application") powerpoint.Visible = 1 slides = powerpoint.Presentations.Open(input_file_path) #保存PDF slides.SaveAs(output_file_path, 32) slides.Close()
相关参数与细节可以查阅comtypes官方文档,因为我是mac所以没有过多研究,在成功转换之后就可以和我们之前的批量操作与合并进行结合实现自动化了!
md转pdf
关于markdown转pdf,几乎所有markdown编辑器都支持导出为pdf格式,本以为这个需求并不高,但是研究了一圈发现很多老外造了很多md转pdf的轮子,比如md2pdf、markdown2pdf、md2pdf-client等。因为大多数博客使用的是markdown格式,使用这些库可以很好的将博客文章批量转换为PDF文档存储。
早起都试了一圈,找到一个语法最简单的markdown2pdf3,直接pip安装即可,使用两行代码即可将一个md文件转换为pdf
from markdown2pdf3 import * convert_markdown_to_pdf('test.md') #你的markdown文件路径
但是要注意的是如果有中文,还需要进行一些额外的设置,可以查阅官方文档,不过现在就能和之前讲的Word转PDF结合,批量转换指定路径下的全部markdown文件为pdf,比如可以使用下面的代码找到当前文件夹下的全部md文件
import os import glob from pathlib import Path path = os.getcwd() + '/' p = Path(path) #初始化构造Path对象 FileList=list(p.glob("**/*.md"))
html转pdf
关于html也就是网页转为PDF是来问我最多的问题,其实很简单,之前在Selenium爬取公众号全部文章这篇文章中就提到使用PDFKIT即可,但是并不是直接pip安装pdfkit就行,我们需要提前进入下面的网站选择自己电脑系统对应的wkhtmltopdf下载安装
https://wkhtmltopdf.org/downloads.html
安装完使用pip安装pdfkit
pip install pdfkit
现在我们就能使用两行代码转换指定网页为PDF格式,比如将我的第一篇自动化文章转为PDF
看起来效果还是非常好的,所有格式包括代码都完整的保存了下来,接下来怎么做就不用我多说了,比如你想下载一个公众号所有文章为PDF格式,那就先将历史文章URL提取出来,接着使用pdfkit转换即可,而这两步骤我们都已经详细讲解过了!
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28