京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:刘早起
来源:早起Python
大家好,又到了python办公自动化专题。今天讲的是各位一定会接触到的PDF转换,关于各种格式的文件转换为PDF有很多第三方工具与网站可以实现,但是使用Python的好处不仅可以批量转换,同时一旦脚本写完了以后就可以一键执行,彻底解放双手,那么本文就来盘一盘如何使用Python来将Word/Excel/PPT/Markdown/Html等各种格式的文件转换为PDF!
Word转PDF
Word转PDF应该是最常见的需求了,毕竟使用PDF格式可以更方便展示文档,虽然在Word中可以直接导出为PDF格式,但是使用Python可以批量转换,更加高效。
目前在Python中针对Word转换为PDF的库有很多,比如win32就可以调用word底层vba,将word转成pdf,或者comtypes等,但是这些常用的库仅能在Windows机器上运行,所以为了照顾mac用户本文使用一个比较小众的库docx2pdf,看名字就能知道这是专门用于word转pdf,安装很简单
pip install docx2pdf
使用也比win32等库更简洁,一行代码导入一行代码转换即可
from docx2pdf import convert
convert("input.docx", "output.pdf")
但是有人就会说虽然简单,但是这个操作word本身就可以完成,好的接下来放大招,我们可以使用下面的代码找到当前或者指定文件夹下的全部word文件
#查找当前目录下的全部word文件
import os
import glob
from pathlib import Path
path = os.getcwd() + '/'
p = Path(path) #初始化构造Path对象
FileList=list(p.glob("**/*.docx"))
接下来只要写一个循环就可以将该目录下的全部word一次性转换为PDF
for file in FileList:
convert(file,f"{file}.pdf")
就这样,不到10行代码,只要一秒,指定文件夹中5份Word就轻松转换为PDF,现在还能使用我们之前自动化系列文章写过的批量合并PDF结合一键合并这5份PDF!
Excel转PDF
Excel转PDF可能平时用的不多,但是作为Office全家桶中的重要工具,并且转换完的表格可以复制所以我们也讲一下。使用到的工具既不是常用的openpyxl也不是pandas,而是另一个专门用于处理PDF的库fpdf
import pandas as pd import numpy as np df_1 = pd.DataFrame(np.random.randn(10, 2), columns=list('AB'))
为了方便讲解我们使用Pandas和NumPy来创建一个示例数据文件,当然也可以使用从本地读取
现在可以使用下面的代码将这个表格转换为PDF
from fpdf import FPDF
pdf = FPDF()
pdf.add_page()
pdf.set_xy(0, 0)
pdf.set_font('arial', 'B', 14)
pdf.cell(60)
pdf.cell(70, 10, 'Excel to PDF', 0, 2, 'C')
pdf.cell(-40)
pdf.cell(50, 10, 'Index Column', 1, 0, 'C')
pdf.cell(40, 10, 'A', 1, 0, 'C')
pdf.cell(40, 10, 'B', 1, 2, 'C')
pdf.cell(-90)
pdf.set_font('arial', '', 12)
for i in range(0, len(df_1)):
col_ind = str(i)
col_a = str(df_1.A.iloc[i])
col_b = str(df_1.B.iloc[i])
pdf.cell(50, 10, '%s' % (col_ind), 1, 0, 'C')
pdf.cell(40, 10, '%s' % (col_a), 0, 0, 'C')
pdf.cell(40, 10, '%s' % (col_b), 0, 2, 'C')
pdf.cell(-90)
pdf.output('Excel2PDF.pdf', 'F')
,其实思路和openpyxl类似,遍历每一个单元格并写入数据,只不过现在是往PDF文件中写入。
PPT转PDF
本节介绍一下PPT如何转换为PDF,但是我搜了一大圈都没有MAC用户可以实现的方法,所以只能针对Windows去操作,使用到的就是在word2pdf中讲到的comtypes
import sys
import os
import comtypes.client
#设置路径
input_file_path = sys.argv[1]
output_file_path = sys.argv[2]
input_file_path = os.path.abspath(input_file_path)
output_file_path = os.path.abspath(output_file_path)
#创建PDF
powerpoint = comtypes.client.CreateObject("Powerpoint.Application")
powerpoint.Visible = 1
slides = powerpoint.Presentations.Open(input_file_path)
#保存PDF
slides.SaveAs(output_file_path, 32)
slides.Close()
相关参数与细节可以查阅comtypes官方文档,因为我是mac所以没有过多研究,在成功转换之后就可以和我们之前的批量操作与合并进行结合实现自动化了!
md转pdf
关于markdown转pdf,几乎所有markdown编辑器都支持导出为pdf格式,本以为这个需求并不高,但是研究了一圈发现很多老外造了很多md转pdf的轮子,比如md2pdf、markdown2pdf、md2pdf-client等。因为大多数博客使用的是markdown格式,使用这些库可以很好的将博客文章批量转换为PDF文档存储。
早起都试了一圈,找到一个语法最简单的markdown2pdf3,直接pip安装即可,使用两行代码即可将一个md文件转换为pdf
from markdown2pdf3 import *
convert_markdown_to_pdf('test.md') #你的markdown文件路径
但是要注意的是如果有中文,还需要进行一些额外的设置,可以查阅官方文档,不过现在就能和之前讲的Word转PDF结合,批量转换指定路径下的全部markdown文件为pdf,比如可以使用下面的代码找到当前文件夹下的全部md文件
import os
import glob
from pathlib import Path
path = os.getcwd() + '/'
p = Path(path) #初始化构造Path对象
FileList=list(p.glob("**/*.md"))
html转pdf
关于html也就是网页转为PDF是来问我最多的问题,其实很简单,之前在Selenium爬取公众号全部文章这篇文章中就提到使用PDFKIT即可,但是并不是直接pip安装pdfkit就行,我们需要提前进入下面的网站选择自己电脑系统对应的wkhtmltopdf下载安装
https://wkhtmltopdf.org/downloads.html
安装完使用pip安装pdfkit
pip install pdfkit
现在我们就能使用两行代码转换指定网页为PDF格式,比如将我的第一篇自动化文章转为PDF
看起来效果还是非常好的,所有格式包括代码都完整的保存了下来,接下来怎么做就不用我多说了,比如你想下载一个公众号所有文章为PDF格式,那就先将历史文章URL提取出来,接着使用pdfkit转换即可,而这两步骤我们都已经详细讲解过了!
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16