
CDA数据分析师 出品
作者:Mika
数据:真达
后期:Mika
【导读】手把手教你如何用python写出心血管疾病预测模型。
全球每年约有1700万人死于心血管疾病,当中主要表现为心肌梗死和心力衰竭。当心脏不能泵出足够的血液来满足人体的需要时,就会发生心力衰竭,通常由糖尿病、高血压或其他心脏疾病引起。
在检测心血管疾病的早期症状时,机器学习就能派上用场了。通过患者的电子病历,可以记录患者的症状、身体特征、临床实验室测试值,从而进行生物统计分析,这能够发现那些医生无法检测到的模式和相关性。
尤其通过机器学习,根据数据就能预测患者的存活率,今天我们就教大家如何用Python写一个心血管疾病的预测模型。
研究背景和数据来源
我们用到的数据集来自Davide Chicco和Giuseppe Jurman发表的论文:《机器学习可以仅通过血肌酐和射血分数来预测心力衰竭患者的生存率》。
他们收集整理了299名心力衰竭患者的医疗记录,这些患者数据来自2015年4月至12月间巴基斯坦费萨拉巴德心脏病研究所和费萨拉巴德联合医院。这些患者由105名女性和194名男性组成,年龄在40至95岁之间。所有299例患者均患有左心室收缩功能不全,并曾出现过心力衰竭。
Davide和Giuseppe应用了多个机器学习分类器来预测患者的生存率,并根据最重要的危险因素对特征进行排序。同时还利用传统的生物统计学测试进行了另一种特征排序分析,并将这些结果与机器学习算法提供的结果进行比较。
他们分析对比了心力衰竭患者的一系列数据,最终发现根据血肌酐和射血分数这两项数据能够很好的预测心力衰竭患者的存活率。
今天我们就教教大家,如果根据这共13个字段的299 条病人诊断记录,用Python写出预测心力衰竭患者存活率的预测模型。
下面是具体的步骤和关键代码。
01、数据理解
数据取自于kaggle平台分享的心血管疾病数据集,共有13个字段299 条病人诊断记录。具体的字段概要如下:
02、数据读入和初步处理
首先导入所需包。
# 数据整理 import numpy as np import pandas as pd # 可视化 import matplotlib.pyplot as plt import seaborn as sns import plotly as py import plotly.graph_objs as go import plotly.express as px import plotly.figure_factory as ff # 模型建立 from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier import lightgbm # 前处理 from sklearn.preprocessing import StandardScaler # 模型评估 from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.metrics import plot_confusion_matrix, confusion_matrix, f1_score
加载并预览数据集:
# 读入数据 df = pd.read_csv('./data/heart_failure.csv') df.head()
03、探索性分析
1. 描述性分析
df.describe().T
从上述描述性分析结果简单总结如下:
2. 目标变量
# 产生数据 death_num = df['DEATH_EVENT'].value_counts() death_num = death_num.reset_index() # 饼图 fig = px.pie(death_num, names='index', values='DEATH_EVENT') fig.update_layout(title_text='目标变量DEATH_EVENT的分布') py.offline.plot(fig, filename='./html/目标变量DEATH_EVENT的分布.html')
总共有299人,其中随访期未存活人数96人,占总人数的32.1%
3. 贫血
从图中可以看出,有贫血症状的患者死亡概率较高,为35.66%。
bar1 = draw_categorical_graph(df['anaemia'], df['DEATH_EVENT'], title='红细胞、血红蛋白减少和是否存活') bar1.render('./html/红细胞血红蛋白减少和是否存活.html')
4. 年龄
从直方图可以看出,在患心血管疾病的病人中年龄分布差异较大,表现趋势为年龄越大,生存比例越低、死亡的比例越高。
# 产生数据 surv = df[df['DEATH_EVENT'] == 0]['age'] not_surv = df[df['DEATH_EVENT'] == 1]['age'] hist_data = [surv, not_surv] group_labels = ['Survived', 'Not Survived'] # 直方图 fig = ff.create_distplot(hist_data, group_labels, bin_size=0.5) fig.update_layout(title_text='年龄和生存状态关系') py.offline.plot(fig, filename='./html/年龄和生存状态关系.html')
5. 年龄/性别
从分组统计和图形可以看出,不同性别之间生存状态没有显著性差异。在死亡的病例中,男性的平均年龄相对较高。
6. 年龄/抽烟
数据显示,整体来看,是否抽烟与生存与否没有显著相关性。但是当我们关注抽烟的人群中,年龄在50岁以下生存概率较高。
7. 磷酸肌酸激酶(CPK)
从直方图可以看出,血液中CPK酶的水平较高的人群死亡的概率较高。
8. 射血分数
射血分数代表了心脏的泵血功能,过高和过低水平下,生存的概率较低。
9. 血小板
血液中血小板(100~300)×10^9个/L,较高或较低的水平则代表不正常,存活的概率较低。
10. 血肌酐水平
血肌酐是检测肾功能的最常用指标,较高的指数代表肾功能不全、肾衰竭,有较高的概率死亡。
11. 血清钠水平
图形显示,血清钠较高或较低往往伴随着风险。
12. 相关性分析
从数值型属性的相关性图可以看出,变量之间没有显著的共线性关系。
num_df = df[['age', 'creatinine_phosphokinase', 'ejection_fraction', 'platelets', 'serum_creatinine', 'serum_sodium']] plt.figure(figsize=(12, 12)) sns.heatmap(num_df.corr(), vmin=-1, cmap='coolwarm', linewidths=0.1, annot=True) plt.title('Pearson correlation coefficient between numeric variables', fontdict={'fontsize': 15}) plt.show()
04、特征筛选
我们使用统计方法进行特征筛选,目标变量DEATH_EVENT是分类变量时,当自变量是分类变量,使用卡方鉴定,自变量是数值型变量,使用方差分析。
# 划分X和y X = df.drop('DEATH_EVENT', axis=1) y = df['DEATH_EVENT']
from feature_selection import Feature_select fs = Feature_select(num_method='anova', cate_method='kf') X_selected = fs.fit_transform(X, y) X_selected.head()
2020 17:19:49 INFO attr select success! After select attr: ['serum_creatinine', 'serum_sodium', 'ejection_fraction', 'age', 'time']
05、数据建模
首先划分训练集和测试集。
# 划分训练集和测试集 Features = X_selected.columns X = df[Features] y = df["DEATH_EVENT"] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y, random_state=2020)
# 标准化 scaler = StandardScaler() scaler_Xtrain = scaler.fit_transform(X_train) scaler_Xtest = scaler.fit_transform(X_test) lr = LogisticRegression() lr.fit(scaler_Xtrain, y_train) test_pred = lr.predict(scaler_Xtest) # F1-score print("F1_score of LogisticRegression is : ", round(f1_score(y_true=y_test, y_pred=test_pred),2))
我们使用决策树进行建模,设置特征选择标准为gini,树的深度为5。输出混淆矩阵图:在这个案例中,1类是我们关注的对象。
# DecisionTreeClassifier clf = DecisionTreeClassifier(criterion='gini', max_depth=5, random_state=1) clf.fit(X_train, y_train) test_pred = clf.predict(X_test) # F1-score print("F1_score of DecisionTreeClassifier is : ", round(f1_score(y_true=y_test, y_pred=test_pred),2)) # 绘图 plt.figure(figsize=(10, 7)) plot_confusion_matrix(clf, X_test, y_test, cmap='Blues') plt.title("DecisionTreeClassifier - Confusion Matrix", fontsize=15) plt.xticks(range(2), ["Heart Not Failed","Heart Fail"], fontsize=12) plt.yticks(range(2), ["Heart Not Failed","Heart Fail"], fontsize=12) plt.show()
F1_score of DecisionTreeClassifier is : 0.61 <Figure size 720x504 with 0 Axes>
使用网格搜索进行参数调优,优化标准为f1。
parameters = {'splitter':('best','random'), 'criterion':("gini","entropy"), "max_depth":[*range(1, 20)], } clf = DecisionTreeClassifier(random_state=1) GS = GridSearchCV(clf, param_grid=parameters, cv=10, scoring='f1', n_jobs=-1) GS.fit(X_train, y_train) print(GS.best_params_) print(GS.best_score_)
{'criterion': 'entropy', 'max_depth': 3, 'splitter': 'best'} 0.7638956305132776
使用最优的模型重新评估测试集效果:
test_pred = GS.best_estimator_.predict(X_test) # F1-score print("F1_score of DecisionTreeClassifier is : ", round(f1_score(y_true=y_test, y_pred=test_pred),2)) # 绘图 plt.figure(figsize=(10, 7)) plot_confusion_matrix(GS, X_test, y_test, cmap='Blues') plt.title("DecisionTreeClassifier - Confusion Matrix", fontsize=15) plt.xticks(range(2), ["Heart Not Failed","Heart Fail"], fontsize=12) plt.yticks(range(2), ["Heart Not Failed","Heart Fail"], fontsize=12) plt.show()
使用随机森林
# RandomForestClassifier rfc = RandomForestClassifier(n_estimators=1000, random_state=1) parameters = {'max_depth': np.arange(2, 20, 1) } GS = GridSearchCV(rfc, param_grid=parameters, cv=10, scoring='f1', n_jobs=-1) GS.fit(X_train, y_train) print(GS.best_params_) print(GS.best_score_) test_pred = GS.best_estimator_.predict(X_test) # F1-score print("F1_score of RandomForestClassifier is : ", round(f1_score(y_true=y_test, y_pred=test_pred),2))
{'max_depth': 3} 0.791157747481277 F1_score of RandomForestClassifier is : 0.53
使用Boosting
gbl = GradientBoostingClassifier(n_estimators=1000, random_state=1) parameters = {'max_depth': np.arange(2, 20, 1) } GS = GridSearchCV(gbl, param_grid=parameters, cv=10, scoring='f1', n_jobs=-1) GS.fit(X_train, y_train) print(GS.best_params_) print(GS.best_score_) # 测试集 test_pred = GS.best_estimator_.predict(X_test) # F1-score print("F1_score of GradientBoostingClassifier is : ", round(f1_score(y_true=y_test, y_pred=test_pred),2))
{'max_depth': 3} 0.7288420428900305 F1_score of GradientBoostingClassifier is : 0.65
使用LGBMClassifier
lgb_clf = lightgbm.LGBMClassifier(boosting_type='gbdt', random_state=1) parameters = {'max_depth': np.arange(2, 20, 1) } GS = GridSearchCV(lgb_clf, param_grid=parameters, cv=10, scoring='f1', n_jobs=-1) GS.fit(X_train, y_train) print(GS.best_params_) print(GS.best_score_) # 测试集 test_pred = GS.best_estimator_.predict(X_test) # F1-score print("F1_score of LGBMClassifier is : ", round(f1_score(y_true=y_test, y_pred=test_pred),2))
{'max_depth': 2} 0.780378102289867 F1_score of LGBMClassifier is : 0.74
以下为各模型在测试集上的表现效果对比:
LogisticRegression:0.63
DecisionTree Classifier:0.73
Random Forest Classifier: 0.53
GradientBoosting Classifier: 0.65
LGBM Classifier: 0.74
参考链接:
Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-020-1023-5#Abs1
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11