
作者:丁点helper
来源:丁点帮你
回忆一下上一讲用到的例子:
输入数据的代码在上一讲详细讲解过,这里总结如下:
age <- c(25, 34, 59, 60, 20) #患者年龄type <- c(1, 2, 2, 2, 1) #糖尿病类型status <- c("poor", "improved", "excellent", "poor", "excellent") #病情comorbidity<- c(TRUE, FALSE, FALSE, TRUE, FALSE) #出现并发症
age、type、status、comorbidity中分别仅有一种数据类型,它们都是向量。本文介绍生成向量之后,如何对其进行简单的操作。
1. 查看与改变向量的数据类型
看到一个向量,首先要搞清楚其中包含的数据类型。就本例而言,从表面看也很容易区分,但实际上一项统计分析工作用到的向量可能很多,用函数class()可以快速知晓某向量的数据类型,例如:
class(age) [1] "numeric"class(type) [1] "numeric"class(status) [1] "character"class(comorbidity)[1] "logical"
不同类型的数据可以根据需要互相转换,用as.目标数据类型()函数:
as.numeric() #将括号中的内容转变为数值型数据 as.character() #转变为字符型as.logical() #转变为逻辑型as.factor() #转变为因子型
所以也可用as.character()将type中的数值型数据转变为字符型:
type[1] 1 2 2 2 1class(type) [1] "numeric" type <- as.character(type) # 注意要将新的结果赋值给typetype[1] "1" "2" "2" "2" "1"class(type)[1] "character"
之前讲过,将定性变量(即分类变量)以因子的形式输入会有助于后续的统计分析工作,factor()这个函数可以帮我们把数据转变为因子型:
type <- c(1, 2, 2, 2, 1) type <- factor(type) type[1] 1 2 2 2 1 Levels: 1 2class(type)[1] "factor"
用1和2这样的阿拉伯数字其实不太利于准确地表达数据内容,可以给原来的1和2加上标签:
type <- factor(type, levels = c("1", "2"), labels = c("Type 1", "Type 2")) type[1] Type 1 Type 2 Type 2 Type 2 Type 1 Levels: Type 1 Type 2
所以在输入定性变量(分类变量)时可以采用这种简便方法。
再看另一个例子:
status[1] "poor" "improved" "excellent" "poor" "excellent" status <- factor(status)status[1] poor improved excellent poor excellentLevels: excellent improved poorclass(status)[1] "factor"
由于status是一个有序分类变量,所以在转变为因子时还应体现其顺序:
status <- factor(status, levels = c('poor', 'improved','excellent'),ordered = TRUE) status[1] poor improved excellent poor excellentLevels: poor < improved < excellent
这里的顺序是根据levels这个命令中的内容生成的,可自行调整levels命令中的顺序:
status <- factor(status, levels = c('excellent','improved' ,'poor'),ordered = TRUE) status[1] poor improved excellent poor excellentLevels: excellent < improved < poor
2. 向量中的数据定位
以age这个向量为例:
age <- c(25, 34, 59, 60, 20) age [1] 25 34 59 60 20
输出向量中排在第3位的数据:
age[3] [1] 59
输出排在1,2,5位的数据:
age[c(1,2,5)] [1] 25 34 20
输出1至3位的数据:
age[c(1:3)] [1] 25 34 59
3. 向量中的数据计算
以age这个向量为例:
age <- c(25, 34, 59, 60, 20) # 仍以age为例age [1] 25 34 59 60 20 age+4 # 给向量中每个数都加4 [1] 29 38 63 64 24 sqrt(age) # 求平方根 [1] 5.000000 5.830952 7.681146 7.745967 4.472136 sort(age) # 给数据从低到高排序 [1] 20 25 34 59 60 sort(age, decreasing =T) # 给数据从高到低排序 [1] 60 59 34 25 20 age2 <- c(20,30,40,50,60) # 再生成一个向量 age+age2 # 将两向量中的元素相加 [1] 45 64 99 110 80
4. 生成特定形式的向量
生成重复数据。用rep(x, ……),x表示要重复的内容。
rep(1,times=5) #times表示重复的次数 [1] 1 1 1 1 1 rep(c(1,2),4) #times这个表达可以省略 [1] 1 2 1 2 1 2 1 2 rep(c(1,2),each=4) #each也是针对重复次数的命令 [1] 1 1 1 1 2 2 2 2
特定间隔的数据。用seq(from,to,by)这个函数,from为起始值,to为终止值,by为数据之间的间隔。
seq(1,100,19) #from,to,by都可以省略 [1] 1 20 39 58 77 96 seq(1,10) #如果不指定by的内容,则默认为1 [1] 1 2 3 4 5 6 7 8 9 10
下一篇介绍数据框的相关操作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14