
作者:丁点helper
来源:丁点帮你
回忆一下上一讲用到的例子:
输入数据的代码在上一讲详细讲解过,这里总结如下:
age <- c(25, 34, 59, 60, 20) #患者年龄type <- c(1, 2, 2, 2, 1) #糖尿病类型status <- c("poor", "improved", "excellent", "poor", "excellent") #病情comorbidity<- c(TRUE, FALSE, FALSE, TRUE, FALSE) #出现并发症
age、type、status、comorbidity中分别仅有一种数据类型,它们都是向量。本文介绍生成向量之后,如何对其进行简单的操作。
1. 查看与改变向量的数据类型
看到一个向量,首先要搞清楚其中包含的数据类型。就本例而言,从表面看也很容易区分,但实际上一项统计分析工作用到的向量可能很多,用函数class()可以快速知晓某向量的数据类型,例如:
class(age) [1] "numeric"class(type) [1] "numeric"class(status) [1] "character"class(comorbidity)[1] "logical"
不同类型的数据可以根据需要互相转换,用as.目标数据类型()函数:
as.numeric() #将括号中的内容转变为数值型数据 as.character() #转变为字符型as.logical() #转变为逻辑型as.factor() #转变为因子型
所以也可用as.character()将type中的数值型数据转变为字符型:
type[1] 1 2 2 2 1class(type) [1] "numeric" type <- as.character(type) # 注意要将新的结果赋值给typetype[1] "1" "2" "2" "2" "1"class(type)[1] "character"
之前讲过,将定性变量(即分类变量)以因子的形式输入会有助于后续的统计分析工作,factor()这个函数可以帮我们把数据转变为因子型:
type <- c(1, 2, 2, 2, 1) type <- factor(type) type[1] 1 2 2 2 1 Levels: 1 2class(type)[1] "factor"
用1和2这样的阿拉伯数字其实不太利于准确地表达数据内容,可以给原来的1和2加上标签:
type <- factor(type, levels = c("1", "2"), labels = c("Type 1", "Type 2")) type[1] Type 1 Type 2 Type 2 Type 2 Type 1 Levels: Type 1 Type 2
所以在输入定性变量(分类变量)时可以采用这种简便方法。
再看另一个例子:
status[1] "poor" "improved" "excellent" "poor" "excellent" status <- factor(status)status[1] poor improved excellent poor excellentLevels: excellent improved poorclass(status)[1] "factor"
由于status是一个有序分类变量,所以在转变为因子时还应体现其顺序:
status <- factor(status, levels = c('poor', 'improved','excellent'),ordered = TRUE) status[1] poor improved excellent poor excellentLevels: poor < improved < excellent
这里的顺序是根据levels这个命令中的内容生成的,可自行调整levels命令中的顺序:
status <- factor(status, levels = c('excellent','improved' ,'poor'),ordered = TRUE) status[1] poor improved excellent poor excellentLevels: excellent < improved < poor
2. 向量中的数据定位
以age这个向量为例:
age <- c(25, 34, 59, 60, 20) age [1] 25 34 59 60 20
输出向量中排在第3位的数据:
age[3] [1] 59
输出排在1,2,5位的数据:
age[c(1,2,5)] [1] 25 34 20
输出1至3位的数据:
age[c(1:3)] [1] 25 34 59
3. 向量中的数据计算
以age这个向量为例:
age <- c(25, 34, 59, 60, 20) # 仍以age为例age [1] 25 34 59 60 20 age+4 # 给向量中每个数都加4 [1] 29 38 63 64 24 sqrt(age) # 求平方根 [1] 5.000000 5.830952 7.681146 7.745967 4.472136 sort(age) # 给数据从低到高排序 [1] 20 25 34 59 60 sort(age, decreasing =T) # 给数据从高到低排序 [1] 60 59 34 25 20 age2 <- c(20,30,40,50,60) # 再生成一个向量 age+age2 # 将两向量中的元素相加 [1] 45 64 99 110 80
4. 生成特定形式的向量
生成重复数据。用rep(x, ……),x表示要重复的内容。
rep(1,times=5) #times表示重复的次数 [1] 1 1 1 1 1 rep(c(1,2),4) #times这个表达可以省略 [1] 1 2 1 2 1 2 1 2 rep(c(1,2),each=4) #each也是针对重复次数的命令 [1] 1 1 1 1 2 2 2 2
特定间隔的数据。用seq(from,to,by)这个函数,from为起始值,to为终止值,by为数据之间的间隔。
seq(1,100,19) #from,to,by都可以省略 [1] 1 20 39 58 77 96 seq(1,10) #如果不指定by的内容,则默认为1 [1] 1 2 3 4 5 6 7 8 9 10
下一篇介绍数据框的相关操作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28