
人类构建的过程极为复杂。事实上,我们每时每刻都在面临前所未有的复杂性。当时代的信息量令人难以承受,这时人类就会在这时代的潮流中进化。我们处 理复杂问题的能力是我们感官的统一的结果;每种感官相互协作,大脑把收集的碎片信息集合起来,帮助我们理解周围在无休止发生的复杂事物。
如今,面对庞杂的信息流,新的数字感知形态是多元融合的。但当我们通过非人类感知方法收集数据的时候(比如数字传感器),其实过程是和我们身体一样复杂的,但我们通常将其输出为单一感觉:视觉。
全世界范围内的数据呈现都是以视觉为规则。虽然我们偶尔会看到声波图绘制的一组数据,但还是会找出很好的理由将其可视化。那些简化与渲染复杂的数据的视觉化工具帮助我们高效便捷的识别数据趋势。
然而,虽然我们深谙数据可视化的好处,但其依赖于单个意义层面理解的局限性。例如,当我们的大脑大功率连接输入信号并处理图像信息时,信息则被储存 在快速衰减的记忆区。以此类推,新进入的这部分视觉记忆不断被覆盖。我们嗅觉的记忆过程则与此相反。嗅觉信号运行与储存都与长期记忆体进行信息同步。这也 就是为什么我们时常说我们无法忘记味道,且我们经常通过嗅觉回忆起以前的记忆。
这种多样性的感官体验引发了一个问题:为什么不开发更有效的次级感官数据?将声音,气味,口感,或触感与视觉相连,扩大数据体验的强度,并有可能创造出更多的细微差别,比任何单一模式的效果更好。
正如视觉给了我们颜色、形状、大小、亮度和空间,我们其他的感官也提供我们可能代表不同的方面的数据变量的数组。比如声音,有音调、语气、音量、频率和节奏。触摸有质感,重量,压力,温度,和重要性。
嗅觉和味觉感官有着密切的联系,即便两者混合在一起在,我们仍可以分别出其中的味道和气味。
下面的例子可带我们领略新兴感官数据领域的初步面貌。
尖叫的火山
阿拉斯加的科学家们正在给喷发前的火山录音。通过日常地震活动的微妙物理震动监测火山活动。通过监听,科学家发现在火山爆发前有一种独特的声音模 型。这种信号在渐进的鼓点声后爆发出茶壶烧开水时的尖叫声。虽然研究者不完全清楚声源在哪,但是声音节奏的变快或变慢则预示了火山的爆发。
利用地理位置信息,Brian House创造了一个黑胶专辑来用听觉表达他这一年来去过的所有地方。城市中的每个地点用音阶做注解,而每个城市用音调表示。当把唱片放上唱机开始记录的 时候,唱机以24小时旋转,记叙当天他去过的地方。唱机转动声音播放,行为活动的模式便开始显现。工作日、周末、假期和休息日都可以从声音中区别出来。抛 开地理位置与第地图的关系,我们试图用听觉模式去理解地理位置,这种模式可能之前一直被可视化的传统模式遮蔽掉了。
幽灵食物项目是由艺术家Miriam Simun 和Miriam Songster 发起,旨在通过可穿戴设发出熟悉的食物气味,辅之以无味食品,模拟饮食体验。通过重新建立的味道和嚼的经验,甚至在没有食物的情况下,人的脑海中创造了对 味道的感知。味道,质地和气味都可以映射出一个独特的的数据点,那么让他们相互影响,就会产生很多前所未有的多模态体验。
艺术家Amy Radcliffe在寻找一种能把感情与气味联系起来的嗅觉记录设备,用来捕捉和重现气味模拟系统。虽然这是一个冒险的设备,但其原理则指出了捕捉与复制 气味的力量。鉴于我们的感情与嗅觉的紧密关系,捕获和复制事物与环境的气味可以极其有效的创建有用的数据体验。
当我们进入非视觉表现数据的领域时,重要的是要记住目标不单单是要找到最好的替代可视化或补充可视化。相反,我们的理想应该是体验更丰富的数据。这意味着任何人都可以收集数据,将之应用于不同的感知模式,探索数并发布新的见解。
了解了数据就了解了人们将来会怎么演进。然而,在我们所理解和使用数据的能力方面(包括目前我们认为有意义的方面)我们只是触及了其表面。抛除过去视觉可视化的局限给了我们新的机会去发现和交流从数据中得来的观点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11