
人类构建的过程极为复杂。事实上,我们每时每刻都在面临前所未有的复杂性。当时代的信息量令人难以承受,这时人类就会在这时代的潮流中进化。我们处 理复杂问题的能力是我们感官的统一的结果;每种感官相互协作,大脑把收集的碎片信息集合起来,帮助我们理解周围在无休止发生的复杂事物。
如今,面对庞杂的信息流,新的数字感知形态是多元融合的。但当我们通过非人类感知方法收集数据的时候(比如数字传感器),其实过程是和我们身体一样复杂的,但我们通常将其输出为单一感觉:视觉。
全世界范围内的数据呈现都是以视觉为规则。虽然我们偶尔会看到声波图绘制的一组数据,但还是会找出很好的理由将其可视化。那些简化与渲染复杂的数据的视觉化工具帮助我们高效便捷的识别数据趋势。
然而,虽然我们深谙数据可视化的好处,但其依赖于单个意义层面理解的局限性。例如,当我们的大脑大功率连接输入信号并处理图像信息时,信息则被储存 在快速衰减的记忆区。以此类推,新进入的这部分视觉记忆不断被覆盖。我们嗅觉的记忆过程则与此相反。嗅觉信号运行与储存都与长期记忆体进行信息同步。这也 就是为什么我们时常说我们无法忘记味道,且我们经常通过嗅觉回忆起以前的记忆。
这种多样性的感官体验引发了一个问题:为什么不开发更有效的次级感官数据?将声音,气味,口感,或触感与视觉相连,扩大数据体验的强度,并有可能创造出更多的细微差别,比任何单一模式的效果更好。
正如视觉给了我们颜色、形状、大小、亮度和空间,我们其他的感官也提供我们可能代表不同的方面的数据变量的数组。比如声音,有音调、语气、音量、频率和节奏。触摸有质感,重量,压力,温度,和重要性。
嗅觉和味觉感官有着密切的联系,即便两者混合在一起在,我们仍可以分别出其中的味道和气味。
下面的例子可带我们领略新兴感官数据领域的初步面貌。
尖叫的火山
阿拉斯加的科学家们正在给喷发前的火山录音。通过日常地震活动的微妙物理震动监测火山活动。通过监听,科学家发现在火山爆发前有一种独特的声音模 型。这种信号在渐进的鼓点声后爆发出茶壶烧开水时的尖叫声。虽然研究者不完全清楚声源在哪,但是声音节奏的变快或变慢则预示了火山的爆发。
利用地理位置信息,Brian House创造了一个黑胶专辑来用听觉表达他这一年来去过的所有地方。城市中的每个地点用音阶做注解,而每个城市用音调表示。当把唱片放上唱机开始记录的 时候,唱机以24小时旋转,记叙当天他去过的地方。唱机转动声音播放,行为活动的模式便开始显现。工作日、周末、假期和休息日都可以从声音中区别出来。抛 开地理位置与第地图的关系,我们试图用听觉模式去理解地理位置,这种模式可能之前一直被可视化的传统模式遮蔽掉了。
幽灵食物项目是由艺术家Miriam Simun 和Miriam Songster 发起,旨在通过可穿戴设发出熟悉的食物气味,辅之以无味食品,模拟饮食体验。通过重新建立的味道和嚼的经验,甚至在没有食物的情况下,人的脑海中创造了对 味道的感知。味道,质地和气味都可以映射出一个独特的的数据点,那么让他们相互影响,就会产生很多前所未有的多模态体验。
艺术家Amy Radcliffe在寻找一种能把感情与气味联系起来的嗅觉记录设备,用来捕捉和重现气味模拟系统。虽然这是一个冒险的设备,但其原理则指出了捕捉与复制 气味的力量。鉴于我们的感情与嗅觉的紧密关系,捕获和复制事物与环境的气味可以极其有效的创建有用的数据体验。
当我们进入非视觉表现数据的领域时,重要的是要记住目标不单单是要找到最好的替代可视化或补充可视化。相反,我们的理想应该是体验更丰富的数据。这意味着任何人都可以收集数据,将之应用于不同的感知模式,探索数并发布新的见解。
了解了数据就了解了人们将来会怎么演进。然而,在我们所理解和使用数据的能力方面(包括目前我们认为有意义的方面)我们只是触及了其表面。抛除过去视觉可视化的局限给了我们新的机会去发现和交流从数据中得来的观点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14