京公网安备 11010802034615号
经营许可证编号:京B2-20210330
人类构建的过程极为复杂。事实上,我们每时每刻都在面临前所未有的复杂性。当时代的信息量令人难以承受,这时人类就会在这时代的潮流中进化。我们处 理复杂问题的能力是我们感官的统一的结果;每种感官相互协作,大脑把收集的碎片信息集合起来,帮助我们理解周围在无休止发生的复杂事物。
如今,面对庞杂的信息流,新的数字感知形态是多元融合的。但当我们通过非人类感知方法收集数据的时候(比如数字传感器),其实过程是和我们身体一样复杂的,但我们通常将其输出为单一感觉:视觉。
全世界范围内的数据呈现都是以视觉为规则。虽然我们偶尔会看到声波图绘制的一组数据,但还是会找出很好的理由将其可视化。那些简化与渲染复杂的数据的视觉化工具帮助我们高效便捷的识别数据趋势。
然而,虽然我们深谙数据可视化的好处,但其依赖于单个意义层面理解的局限性。例如,当我们的大脑大功率连接输入信号并处理图像信息时,信息则被储存 在快速衰减的记忆区。以此类推,新进入的这部分视觉记忆不断被覆盖。我们嗅觉的记忆过程则与此相反。嗅觉信号运行与储存都与长期记忆体进行信息同步。这也 就是为什么我们时常说我们无法忘记味道,且我们经常通过嗅觉回忆起以前的记忆。
这种多样性的感官体验引发了一个问题:为什么不开发更有效的次级感官数据?将声音,气味,口感,或触感与视觉相连,扩大数据体验的强度,并有可能创造出更多的细微差别,比任何单一模式的效果更好。
正如视觉给了我们颜色、形状、大小、亮度和空间,我们其他的感官也提供我们可能代表不同的方面的数据变量的数组。比如声音,有音调、语气、音量、频率和节奏。触摸有质感,重量,压力,温度,和重要性。
嗅觉和味觉感官有着密切的联系,即便两者混合在一起在,我们仍可以分别出其中的味道和气味。
下面的例子可带我们领略新兴感官数据领域的初步面貌。
尖叫的火山
阿拉斯加的科学家们正在给喷发前的火山录音。通过日常地震活动的微妙物理震动监测火山活动。通过监听,科学家发现在火山爆发前有一种独特的声音模 型。这种信号在渐进的鼓点声后爆发出茶壶烧开水时的尖叫声。虽然研究者不完全清楚声源在哪,但是声音节奏的变快或变慢则预示了火山的爆发。
利用地理位置信息,Brian House创造了一个黑胶专辑来用听觉表达他这一年来去过的所有地方。城市中的每个地点用音阶做注解,而每个城市用音调表示。当把唱片放上唱机开始记录的 时候,唱机以24小时旋转,记叙当天他去过的地方。唱机转动声音播放,行为活动的模式便开始显现。工作日、周末、假期和休息日都可以从声音中区别出来。抛 开地理位置与第地图的关系,我们试图用听觉模式去理解地理位置,这种模式可能之前一直被可视化的传统模式遮蔽掉了。
幽灵食物项目是由艺术家Miriam Simun 和Miriam Songster 发起,旨在通过可穿戴设发出熟悉的食物气味,辅之以无味食品,模拟饮食体验。通过重新建立的味道和嚼的经验,甚至在没有食物的情况下,人的脑海中创造了对 味道的感知。味道,质地和气味都可以映射出一个独特的的数据点,那么让他们相互影响,就会产生很多前所未有的多模态体验。
艺术家Amy Radcliffe在寻找一种能把感情与气味联系起来的嗅觉记录设备,用来捕捉和重现气味模拟系统。虽然这是一个冒险的设备,但其原理则指出了捕捉与复制 气味的力量。鉴于我们的感情与嗅觉的紧密关系,捕获和复制事物与环境的气味可以极其有效的创建有用的数据体验。
当我们进入非视觉表现数据的领域时,重要的是要记住目标不单单是要找到最好的替代可视化或补充可视化。相反,我们的理想应该是体验更丰富的数据。这意味着任何人都可以收集数据,将之应用于不同的感知模式,探索数并发布新的见解。
了解了数据就了解了人们将来会怎么演进。然而,在我们所理解和使用数据的能力方面(包括目前我们认为有意义的方面)我们只是触及了其表面。抛除过去视觉可视化的局限给了我们新的机会去发现和交流从数据中得来的观点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04