京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据:物流掘金的新武器
当前,大数据应用的风潮,正盛行于各行各业。许多具有前瞻战略眼光的企业,已然通过大数据的武装,形成了区别于同行的核心竞争力。那么,对于物流行业而言,大数据应用究竟有着怎样的价值?
从一些案例中,简单地阐述三类大数据在物流行业中的应用模式:
一是,自建物流的企业基于生产或销售的预测对物流活动的指导。因为,在自建物流的关系中,物流部门可以获得更多的数据资源。在大数据的支持下,一些看似没有意义的数据也能为物流活动提供指导作用。例如,美国亚马逊公司早在2008年就实现了通过分析网页浏览量和货物购买的关系,预测商流发生的时间和地点。亚马逊的物流部门则在交易未产生之前,就能将货物运往目的地附近,从而大大提高了物流服务水平。
二是,第三方物流公司采集车辆内数据指导运输。大型第三方物流企业往往拥有很多的车辆,每天车辆油耗的费用就十分庞大。对此,UPS正在开展一个项目,即通过侦测UPS配送车辆上的地理位置信息、装载率、货物类型等实时信息,通过大数据分析能力整合这些信息,为司机提供合理的、优化的路线安排,而此项目在实验地区已经为UPS节约了数十万美元的燃油费用。
三是,电商企业牵头,物流企业入股,通过共享数据指导物流活动。由于物流企业之间存在着严重的竞争关系,所以大家都不肯轻易地共享自己的数据。而通过各自控股的方式,可以更好的共享数据。例如,阿里巴巴公司联合五大快递企业成立了“菜鸟网络”,推出了全新的物流数据雷达服务。物流数据雷达将可以提供详细的区域和网点预测,不仅可以监控到中转站,还可以监控到行政县区及服务网点的层面。这些数据不仅可以更加客观地帮助电商平台和快递企业做出决策,同时还便于通过线路预测帮助各大快递企业分拨不爆仓,并有利于提升快递“最后一公里”的服务质量。此外,通过数据雷达,商家也能更加清楚地实现物流订单管理,揽收率、在途率、签收率等一目了然;同时,商家还可以针对不同情况采取对应的措施,如长期在途订单的消费者关怀,已签收用户的售后服务,快递异常情况的主动跟进和协调处理等等。
由此可见,大数据给物流行业带来的直接效果就是降低物流成本,大大提高物流业的社会效益。仅凭此一点就可以断定,大数据的应用在物流业中将有巨大的发展空间。特别是在《关于运用大数据加强对市场主体服务和监管的若干意见》利好政策的扶持下,大数据的应用将成为未来物流业发展的主流趋势。
首先,应用大数据可以帮助物流企业开发物流领域的“黑大陆”。如果人们能够掌握物流活动过程中的全部数据,那么,所谓的物流“黑大陆”将不复存在;而如果能够充分分析和挖掘这些数据的价值,那么,则可以有效地帮助我们找到物流市场的潜力所在。
第二,应用大数据可以帮助物流企业做出正确的决策。在物流领域中,成本和效率一直都是难以同时兼顾的。但通过数据分析,可以让物流企业看到具体的业务运行情况,清楚地判断未来业务发展方向,从而有助于物流企业更加专注于核心业务,提升自身的竞争能力;同时,通过对实时数据的掌控,物流企业还可以即时对业务进行调整,确保业务板块都可以赢利,从而实现非常高效的运营。
鉴于以上优势作用,加强对大数据的进一步研究与应用,将是带动整个物流行业实现升级与跃进,打造社会化、节约化、标准化的新物流服务链,以及全方位提升我国物流业服务水平、信息化水平的必由之路。特别是在《关于运用大数据加强对市场主体服务和监管的若干意见》利好政策下,我们更应该强化大数据应用,提升大数据能力,推进大数据在物流行业中的快速发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第四章 战略与业务数据分析考点43:战略数据分析基础考点44:表格结构数据的使用考点45:输入数据和资源 ...
2026-02-22CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10