京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Excel学习笔记一Excel图表和数据分析
从理论指导角度,数据分析可以划分为基于统计学的和基于数据挖掘的数据分析方法,很显然基于统计学的相对容易理解一些,而数据挖掘对高等数学要求会高一些,相信毕业十几年的同学很可能连A*X**2+B*X+C=0都快忘记了,甚至我不确定等小孩上了初中能不能教的了他数学。
从分析的出发点看,数据分析可以划分为基于业务驱动的和基于纯数学驱动的数据分析,业务驱动是建立在对业务理解的基础上,有些经验论的色彩,大多情况下是验证自己的想法,或者更方便找出业务问题和业绩;而基于纯数学驱动基本上都是通过某些挖掘算法找出数字之间的规律,然后把这种规律翻译成业务,理论上是非常可行的,但实际工作中鲜有成功案例。大多数情况下是把两者结合到一起,即通过拍脑袋的方式定义数据的输入和输出,而挖掘算法只是为了证明一下自己的决策有多高明。
从分析的输出上,数据分析可以以图表、文字、表格、业务推导过程或者一系列高深的数学公式的方式呈现,显而易见图表给人的印象是最深刻的,表格次之,文字效果最差,最后是那些没人看得懂的过程或公式;Excel的优势恰恰就是表格和图表。
从分析工具而言,包括了入门级的Excel、最近红的发紫的R语言,专业统计软件工具SPSS,最强大的SAS,很显然绝大多数人只会Excel,不过Excel也有很多的自带的数据分析库,并且Excel的应用商店云化后的力量不可小觑,未来是否有能力与专业的统计软件数据挖掘工具相媲美还很难说,而且Excel的一个巨大的优势在于其庞大的客户群。
从图表的角度,Excel比不上那些专业的BI工具,从统计角度,Excel比不了那些专业的统计软件;但Excel提供的功能对于我们这些非专业人士已经足够了,通过透视表做一些多维分析,通过应用商店找一些炫的图表,通过插件做一些简单的数据分析,通过VBA和不厌其烦的调试也可以做一些”专业“的图表,这也是我们的目的。
Excel提供的图表种类包括柱形图、折线图、饼图、条形图、面积图、XY(散点图)、股价图、曲面图、雷达图、组合,实际上最常用的是柱形图、折线图、饼图、条形图、组合图;较常用的是面积图、雷达图和XY(散点图);基本不用的是股价图、曲面图。
最后附上两张图表的基本类型和选择的中英文版本。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20