
R语言做地图上的分析
R和ggplot可视化功能非常强大,了解了一下其中的地图做法,发现R做世界地图、美国地图非常容易,但做中国地图就太麻烦了,需要自己DIY。
DIY也有多种方式,但网络上各种帖子教程的出图效果都不太理想,达不到工作用要求。下面是我的摸索过程,记录如下备忘,也请教于R老师们。
0、引子
R里有个绘制地图的maps包,加载后即可绘制地图,试一下以下命令:
library(maps)
map()
即可画出一个世界地图。再试试:
map("state")
map("county")
可分别画出美国分州和分county的地图,真是不费吹灰之力。
可是,要画一幅中国地图,就没有这么容易了,需要先加载一个mapdata包:
library(mapdata)
map("china")
但发现居然还是没有重庆的地图,太坑爹了,没法用,只有自己构造中国地图了。下面开始进入正题,如何用R绘制中国分省热力地图。
1、准备地图数据
先要找到中国地图数据文件。到国家基础地理信息中心的网站(http://nfgis.nsdi.gov.cn)下载官方空间文件,但这个政府网站总是打不开!你可到微信公众号 iamExcelPro 发送 shapefile 获得下载地址,我是雷锋。解压到 c:/rstudy 目录,有3个文件,都是需要的。
加载maptools包,读取空间文件:
library("maptools")
china_map = readShapePoly("c:/rstudy/bou2_4p.shp") # 读取地图空间数据
plot一下看看,是一幅中国地图,有重庆,还包括南海的岛屿,政府数据就是严谨一些:
plot(china_map)
但地图投影方式不对,看起来太扁了,完全不是我们常见的昂首雄鸡状。
加载ggplot2包,用ggplot绘制,并使用polyconic投影方式,显示正常。
library(ggplot2)
ggplot(china_map,aes(x=long,y=lat,group=group)) +
geom_polygon(fill="white",colour="grey") +
coord_map("polyconic")
现在地图是可用的了,但还需要加载和拼接行政信息,以便能与业务数据映射。
x <- china_map@data #读取行政信息
xs <- data.frame(x,id=seq(0:924)-1) #含岛屿共925个形状
library(ggplot2)
china_map1 <- fortify(china_map) #转化为数据框
library(plyr)
china_map_data <- join(china_map1, xs, type = "full") #合并两个数据框
提示:Joining by: id
看不懂?没关系,过了就行。
2、准备业务数据
网上教程居然都是在命令行里输入数据,也很坑爹。我们还是从Excel表格转存来得方便。
按以下格式准备好指标数据,并存为csv格式文件。不直接读取xlsx文件是因为需要装的包比较麻烦。
注意第1列的字段名为NAME,各省名称也是要固定一致的,是为了和地图数据框里的省名一致,便于合并。各省名称是用以下命令查看并记下的。
> unique(china_map@data$NAME)
[1] 黑龙江省 内蒙古自治区 新疆维吾尔自治区 吉林省
[5] 辽宁省 甘肃省 河北省 北京市
[9] 山西省 天津市 陕西省 宁夏回族自治区
[13] 青海省 山东省 西藏自治区 河南省
[17] 江苏省 安徽省 四川省 湖北省
[21] 重庆市 上海市 浙江省 湖南省
[25] 江西省 云南省 贵州省 福建省
[29] 广西壮族自治区 台湾省 广东省 香港特别行政区
[33] 海南省
下面读取业务指标数据,并与地图数据合并:
mydata <- read.csv("c:/rstudy/geshengzhibiao.csv") #读取指标数据,csv格式
china_data <- join(china_map_data, mydata, type="full") #合并两个数据框
提示:Joining by: NAME
3、绘制地图
现在可以开始试试画填色地图了:
ggplot(china_data, aes(x = long, y = lat, group = group, fill = zhibiao)) +
geom_polygon(colour="grey40") +
scale_fill_gradient(low="white",high="steelblue") + #指定渐变填充色,可使用RGB
coord_map("polyconic") #指定投影方式为polyconic,获得常见视角中国地图
好,看到填色地图了,但图中的背景色、坐标轴、经纬线都是不需要的,图例也可以放到左下角,用theme命令清除:
ggplot(china_data, aes(x = long, y = lat, group = group,fill = zhibiao)) +
geom_polygon(colour="grey40") +
scale_fill_gradient(low="white",high="steelblue") + #指定渐变填充色,可使用RGB
coord_map("polyconic") + #指定投影方式为polyconic,获得常见视角中国地图
theme( #清除不需要的元素
panel.grid = element_blank(),
panel.background = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
axis.title = element_blank(),
legend.position = c(0.2,0.3)
)
4、添加省名标签
有时候需要显示省名标签,特别是给老领导看。可根据每个省形状的经纬度平均值求近似中心位置,标注省名。
midpos <- function(x) mean(range(x,na.rm=TRUE))#取形状内的平均坐标
centres <- ddply(china_data,.(province),colwise(midpos,.(long,lat)))
ggplot(china_data,aes(long,lat))+ #此处语法与前面不同,参考ggplot2一书P85
geom_polygon(aes(group=group,fill=zhibiao),colour="black")+
scale_fill_gradient(low="white",high="steelblue") +
coord_map("polyconic") +
geom_text(aes(label=province),data=centres) +
theme(
panel.grid = element_blank(),
panel.background = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
axis.title = element_blank()
)
但发现海南两个字跑到南海去了,不行。下面改使用省会城市的经纬度数据标注省名。
province_city <- read.csv("c:/rstudy/chinaprovincecity.csv") #读取省会城市坐标
ggplot(china_data,aes(long,lat))+
geom_polygon(aes(group=group,fill=zhibiao),colour="grey60")+
scale_fill_gradient(low="white",high="steelblue") +
coord_map("polyconic") +
geom_text(aes(x = jd,y = wd,label = province), data =province_city)+
theme(
panel.grid = element_blank(),
panel.background = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
axis.title = element_blank()
)
至此,终于DIY绘制出了一份中国分省的热力地图,真是够折腾够找虐的,好在图形很精准,以后也可以复用代码。
所以结论就是,一般非专业用户还是使用BingMap、PowerMap、Tableau或者《用地图说话》中的Excel模板,直接填数据出地图吧,其中Excel模板方式是最简单、便携,office协同性最好的。
如果你想用这些代码出图,可准备好用到的3个文件到相应目录,其中一个是你的业务指标csv文件,一步步运行以上代码,应该就可得到一幅中国地图。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18