京公网安备 11010802034615号
经营许可证编号:京B2-20210330
1)时间序列数据库(OpenTSDB)
用HBase储存时间序列数据,每时每刻都在解决,数据库为开源
2)HBase爬虫调度库
垂直搜索爬虫
大规模爬虫(全网爬虫)
这里界定URL爬虫调度
3)HBase文档库
储存文档数据库,偏重于储存
4)银行人民币查询系统
HBase在实际问题中的应用:
当数据需要随机读写应用,或者高并发操作(大数据多次操作),或者当数据结构简单,但是量大(非关系型需要大量应用join操作)
HBase对关系型查询,如join等比较难操作
关键要设计Rowkey,可加快查询
常用语言有Java, thrift引用其他语言操作
在rowkey设计里要避免rowkey热点,要充分利用rowkey有序特点,并可以把需求字段组合成rowkey
时间序列数据库
OpenTSDB属于分布式、可伸缩的时间序列数据库
可以在秒级数据进行采集,并支持永久存储与容量规划,另外可以从不同的metrics进行存储、索引
普通mysql容量不够,维度支持不够
该数据库的经验(应该会有遗漏。。)
1)更多的列,更多的数据,扫描更快(在列上扫描比行上扫描快)
2)要让每一行的数据相对独立。把行按照一定的规律进行切分(譬如认为10秒是一行数据,时间戳)
3)要在每一个KeyValue里储存更多的数据
4)不要把同步的储存到server里面(如HTable/HTablePool等),多用asynchbase的护理高并发数据库
5)key尽量等长
6)不要在一个Region里储存过多?
储存时间序列的方法
每一行保存一个metric & time 以及值,这样可以按不同维度储存
把metric id放在时间前面做组合的key,能够更快扫描相应的维度,而且可以节省储存空间(把metrics编号,而不是直接用其名字做metrics)
还可以把行变宽,使行储存更多数据(+0,+1,+2),但是这个不会节省任何空间,只是展示上有所变化而已
但是行不能无限度变宽。
另外,为了防止网络中断错行,建议按照时间戳分行,而不是时间+1、+2、+3这样按列数断行
有相应的PDF,网上搜就可以了。。
总结
加宽行可以增加扫描速度,组合使用rowkey,但这些并不能节省空间
只有合并列、缩短column family名字才能一定程度上缩短空间
垂度爬虫调度库
多个组(如图片组新闻组等)同时进行爬虫处理,并储存到调度库里,HBase定期读取即可
特点
爬虫软件需要根据实时性、优先级等存储调度需要爬取的url
且爬虫需要为不同组维护url列表
基本上是队列特征,先插入的URL要优先爬取。但是也要有可以自定义优先级的功能。而且由于数据量差异大(图片很大),也要合理分配资源。
如垂直业务同时调度、站点抓取速度限速处理、还有时间戳调度处理。
调度库
为不同频道储存host特点及host url列表。
在url里按照hostid与优先级排序
这里符合之前OpenTSDB的特性,不要直接用名字做rowkey,而是用ID(来自host name表)排序
这样就可以有间隔的扫描线程来执行URL
总结:
要充分运用rowkey进行有序排序
要把rowkey融入有用的字段hostid+PID+URLID
不要直接用字符串作为rowkey,而是编码以后(整数)进行扫描,节省空间(因为每个列都要储存rowkey
而且整数化以后就规整化了
文档库
文档库与调度库原理比较相似
文档库,可以存储网页分析以后更加精细化的数据
特点:
数据格式不一样,需要实时读取和写入(还有更新),数据之间存储会有关联(如BLOG的评论和正文之间是有关联的)
技术特点
拆分基础数据和动态数据(两个column family)
基础的基本不会变(网页标题啊内容啊创建时间啊)
动态数据可以实时变化(浏览量啊等等)
这里不再是一个server应对不同组,而是多个server应对多个组,以应对不同组的不同数据精细化要求
关联
银行人民币查询系统
特点:
规模极大,且设备分散(如ATM啊点钞机啊等等),采集系统要求要及时且不能有遗漏
可按照人民币冠字号来看,做HASH值或逆转(因为冠字号可能是连续的,有些连号钞票会储存在一起,无法有效切分数据储存,有时候会造成访问热点,因此需要更改冠字号来做rowkey)
要求
及时可靠,能够快速检索及存储,且扩展性要好
因为涉及到多设备采集输入,所以可以用Flume+HBase解决问题
选择HBase的原因是应用非常简单,只是简单查询而已,用HBase就够了
可以参考Cloudera开源的日志收集系统
总结
HBase常常需要与其他系统结合使用
要尽量避免产生访问热点(尤其要避免直接采用时间作为rowkey),要把连续号打散
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12