
1)时间序列数据库(OpenTSDB)
用HBase储存时间序列数据,每时每刻都在解决,数据库为开源
2)HBase爬虫调度库
垂直搜索爬虫
大规模爬虫(全网爬虫)
这里界定URL爬虫调度
3)HBase文档库
储存文档数据库,偏重于储存
4)银行人民币查询系统
HBase在实际问题中的应用:
当数据需要随机读写应用,或者高并发操作(大数据多次操作),或者当数据结构简单,但是量大(非关系型需要大量应用join操作)
HBase对关系型查询,如join等比较难操作
关键要设计Rowkey,可加快查询
常用语言有Java, thrift引用其他语言操作
在rowkey设计里要避免rowkey热点,要充分利用rowkey有序特点,并可以把需求字段组合成rowkey
时间序列数据库
OpenTSDB属于分布式、可伸缩的时间序列数据库
可以在秒级数据进行采集,并支持永久存储与容量规划,另外可以从不同的metrics进行存储、索引
普通mysql容量不够,维度支持不够
该数据库的经验(应该会有遗漏。。)
1)更多的列,更多的数据,扫描更快(在列上扫描比行上扫描快)
2)要让每一行的数据相对独立。把行按照一定的规律进行切分(譬如认为10秒是一行数据,时间戳)
3)要在每一个KeyValue里储存更多的数据
4)不要把同步的储存到server里面(如HTable/HTablePool等),多用asynchbase的护理高并发数据库
5)key尽量等长
6)不要在一个Region里储存过多?
储存时间序列的方法
每一行保存一个metric & time 以及值,这样可以按不同维度储存
把metric id放在时间前面做组合的key,能够更快扫描相应的维度,而且可以节省储存空间(把metrics编号,而不是直接用其名字做metrics)
还可以把行变宽,使行储存更多数据(+0,+1,+2),但是这个不会节省任何空间,只是展示上有所变化而已
但是行不能无限度变宽。
另外,为了防止网络中断错行,建议按照时间戳分行,而不是时间+1、+2、+3这样按列数断行
有相应的PDF,网上搜就可以了。。
总结
加宽行可以增加扫描速度,组合使用rowkey,但这些并不能节省空间
只有合并列、缩短column family名字才能一定程度上缩短空间
垂度爬虫调度库
多个组(如图片组新闻组等)同时进行爬虫处理,并储存到调度库里,HBase定期读取即可
特点
爬虫软件需要根据实时性、优先级等存储调度需要爬取的url
且爬虫需要为不同组维护url列表
基本上是队列特征,先插入的URL要优先爬取。但是也要有可以自定义优先级的功能。而且由于数据量差异大(图片很大),也要合理分配资源。
如垂直业务同时调度、站点抓取速度限速处理、还有时间戳调度处理。
调度库
为不同频道储存host特点及host url列表。
在url里按照hostid与优先级排序
这里符合之前OpenTSDB的特性,不要直接用名字做rowkey,而是用ID(来自host name表)排序
这样就可以有间隔的扫描线程来执行URL
总结:
要充分运用rowkey进行有序排序
要把rowkey融入有用的字段hostid+PID+URLID
不要直接用字符串作为rowkey,而是编码以后(整数)进行扫描,节省空间(因为每个列都要储存rowkey
而且整数化以后就规整化了
文档库
文档库与调度库原理比较相似
文档库,可以存储网页分析以后更加精细化的数据
特点:
数据格式不一样,需要实时读取和写入(还有更新),数据之间存储会有关联(如BLOG的评论和正文之间是有关联的)
技术特点
拆分基础数据和动态数据(两个column family)
基础的基本不会变(网页标题啊内容啊创建时间啊)
动态数据可以实时变化(浏览量啊等等)
这里不再是一个server应对不同组,而是多个server应对多个组,以应对不同组的不同数据精细化要求
关联
银行人民币查询系统
特点:
规模极大,且设备分散(如ATM啊点钞机啊等等),采集系统要求要及时且不能有遗漏
可按照人民币冠字号来看,做HASH值或逆转(因为冠字号可能是连续的,有些连号钞票会储存在一起,无法有效切分数据储存,有时候会造成访问热点,因此需要更改冠字号来做rowkey)
要求
及时可靠,能够快速检索及存储,且扩展性要好
因为涉及到多设备采集输入,所以可以用Flume+HBase解决问题
选择HBase的原因是应用非常简单,只是简单查询而已,用HBase就够了
可以参考Cloudera开源的日志收集系统
总结
HBase常常需要与其他系统结合使用
要尽量避免产生访问热点(尤其要避免直接采用时间作为rowkey),要把连续号打散
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13