
1)时间序列数据库(OpenTSDB)
用HBase储存时间序列数据,每时每刻都在解决,数据库为开源
2)HBase爬虫调度库
垂直搜索爬虫
大规模爬虫(全网爬虫)
这里界定URL爬虫调度
3)HBase文档库
储存文档数据库,偏重于储存
4)银行人民币查询系统
HBase在实际问题中的应用:
当数据需要随机读写应用,或者高并发操作(大数据多次操作),或者当数据结构简单,但是量大(非关系型需要大量应用join操作)
HBase对关系型查询,如join等比较难操作
关键要设计Rowkey,可加快查询
常用语言有Java, thrift引用其他语言操作
在rowkey设计里要避免rowkey热点,要充分利用rowkey有序特点,并可以把需求字段组合成rowkey
时间序列数据库
OpenTSDB属于分布式、可伸缩的时间序列数据库
可以在秒级数据进行采集,并支持永久存储与容量规划,另外可以从不同的metrics进行存储、索引
普通mysql容量不够,维度支持不够
该数据库的经验(应该会有遗漏。。)
1)更多的列,更多的数据,扫描更快(在列上扫描比行上扫描快)
2)要让每一行的数据相对独立。把行按照一定的规律进行切分(譬如认为10秒是一行数据,时间戳)
3)要在每一个KeyValue里储存更多的数据
4)不要把同步的储存到server里面(如HTable/HTablePool等),多用asynchbase的护理高并发数据库
5)key尽量等长
6)不要在一个Region里储存过多?
储存时间序列的方法
每一行保存一个metric & time 以及值,这样可以按不同维度储存
把metric id放在时间前面做组合的key,能够更快扫描相应的维度,而且可以节省储存空间(把metrics编号,而不是直接用其名字做metrics)
还可以把行变宽,使行储存更多数据(+0,+1,+2),但是这个不会节省任何空间,只是展示上有所变化而已
但是行不能无限度变宽。
另外,为了防止网络中断错行,建议按照时间戳分行,而不是时间+1、+2、+3这样按列数断行
有相应的PDF,网上搜就可以了。。
总结
加宽行可以增加扫描速度,组合使用rowkey,但这些并不能节省空间
只有合并列、缩短column family名字才能一定程度上缩短空间
垂度爬虫调度库
多个组(如图片组新闻组等)同时进行爬虫处理,并储存到调度库里,HBase定期读取即可
特点
爬虫软件需要根据实时性、优先级等存储调度需要爬取的url
且爬虫需要为不同组维护url列表
基本上是队列特征,先插入的URL要优先爬取。但是也要有可以自定义优先级的功能。而且由于数据量差异大(图片很大),也要合理分配资源。
如垂直业务同时调度、站点抓取速度限速处理、还有时间戳调度处理。
调度库
为不同频道储存host特点及host url列表。
在url里按照hostid与优先级排序
这里符合之前OpenTSDB的特性,不要直接用名字做rowkey,而是用ID(来自host name表)排序
这样就可以有间隔的扫描线程来执行URL
总结:
要充分运用rowkey进行有序排序
要把rowkey融入有用的字段hostid+PID+URLID
不要直接用字符串作为rowkey,而是编码以后(整数)进行扫描,节省空间(因为每个列都要储存rowkey
而且整数化以后就规整化了
文档库
文档库与调度库原理比较相似
文档库,可以存储网页分析以后更加精细化的数据
特点:
数据格式不一样,需要实时读取和写入(还有更新),数据之间存储会有关联(如BLOG的评论和正文之间是有关联的)
技术特点
拆分基础数据和动态数据(两个column family)
基础的基本不会变(网页标题啊内容啊创建时间啊)
动态数据可以实时变化(浏览量啊等等)
这里不再是一个server应对不同组,而是多个server应对多个组,以应对不同组的不同数据精细化要求
关联
银行人民币查询系统
特点:
规模极大,且设备分散(如ATM啊点钞机啊等等),采集系统要求要及时且不能有遗漏
可按照人民币冠字号来看,做HASH值或逆转(因为冠字号可能是连续的,有些连号钞票会储存在一起,无法有效切分数据储存,有时候会造成访问热点,因此需要更改冠字号来做rowkey)
要求
及时可靠,能够快速检索及存储,且扩展性要好
因为涉及到多设备采集输入,所以可以用Flume+HBase解决问题
选择HBase的原因是应用非常简单,只是简单查询而已,用HBase就够了
可以参考Cloudera开源的日志收集系统
总结
HBase常常需要与其他系统结合使用
要尽量避免产生访问热点(尤其要避免直接采用时间作为rowkey),要把连续号打散
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28