
大数据--企业营销转型的必经之路
所周知,互联网行业是中国少数能与欧美列强并驾齐驱的行业,绝对不落后于任何国家。自阿里巴巴上市后,在目前世界市值最高的20家互联网公司中,亚洲国家占了9家,其中仅中国就占6席。
在这样的行业背景下,传统行业迅速向互联网转型,改革幅度之大、思路转化之快令人咂舌,国足要是有这个劲头,也不至于早早开始备战2022世界杯了吧。
互联网跨界、传统行业转型等一系列变革自然而然的进入大家的视野并如火如荼的展开,从门户网站到社交媒体再到近年来移动互联网的迅速崛起,似乎互联网带来的一切新概念及引发的产业格局变化都能够迅速的被市场所接受并形成趋势,然而现在有一个概念虽然大家都随时随地挂在嘴边,但大部分人都说不出个所与然,这个概念大家都或多或少的听到过,这个已不新鲜的新鲜词叫“大数据”。相信大家心里多多少少都有个坎——到底什么是大数据?大数据跟我们又有什么样的关系?
有人说,大数据就是数据大,有人侃侃而谈4个V(量Volume,多样Variety,价值Value,速度Velocity),也有人能够很有深度的谈到BI(商务智能)或预测价值,或者能够拿出Google和Amazon举例,技术流可能会聊起Hadoop,这些都不能算错,但多少有些片面。
今天我们换另一种方式讨论一下大数据。
大概是这么一个概念,在这浩如烟海的世界每个人每天都会在各个地方留下一大串数码的痕迹,购物、看病、运动、行车、工作。然后通过技术的手段,这些数据被收集在一起,放在一个庞大无比的库里,然后分文别类,就能勾勒出各种规律,进而形成各种洞察。然后根据量化的洞察,营销就可以根据这些数据开发、生产、设计、销售和传播,更加精准、高效,让资源和需求更完美匹配。
这就是大数据最广泛的应用了。
国外运用大数据的企业有很多,包括Google运用用户的搜索记录挖掘数据二次利用价值,从而预测出某地流感爆发趋势;Amazon运用用户的购买和浏览历史进行针对性的书籍购买推荐,并成功提升了销售量;Farecast运用过去十年所有的航线机票价格打折数据,预测用户购买机票的时机是否合适。因此,越来越多的企业已经意识到大数据的重要性并开始借助大数据营销的方式和手段与消费者建立起个性化、一对一的沟通营销体系。
如今,在用户需求不断变化,信息快速更迭的趋势下,企业需要通过大数据营销,实现对目标用户的精准定位,对目标人群进行大数据分析,深入挖掘用户的潜在需求,针对不同用户群体提供更加全面优质的个性化产品和服务。
读到这里,相信已经有朋友在构思如何将大数据营销运用到自己的企业或工作当中,那么在国内有哪些大数据应用的案例呢?大数据营销需要把握哪些关键要领呢?下面结合国内移动大数据服务领域的领跑者TalkingData的业务体系来为大家解答。
大数据营销三要素
真实的数据信息
数据采集是大数据营销的基础。想要实施大数据营销,首先得掌握一定的真实数据,脱离了市场和用户的数据对于“大数据”只是一句空话。自2010年国内掀起移动互联网热潮以来,移动大数据在营销方面的应用真正的成为了可能。不同于传统互联网数据的虚无缥缈,移动数据能够在一定程度上真正解锁用户的一些实用信息,如用户所处场景位置、用户的兴趣偏好、用户的行为习惯等等。在“以用户为核心”的时代,掌握用户的多维度数据,并据此分析用户数据,挖掘用户需求,是必不可少的。
TalkingData App Analytics(移动应用数据统计分析平台)自2012年正式发布以来,凭借其完善的数据服务类型、多维度的分析角度、国内顶尖的覆盖能力,为企业客户提供了全方位的用户数据采集方式,实现了企业客户多种方式采集数据的需求。
同时,TalkingData移动观象台其权威的市场情报分析功能,可以帮助客户接触到不同的行业信息,及时采集和更新行业数据,保证企业大数据可以顺利开展。
大数据营销不再像之前以经验销售、关系销售为主导,而是要以实实在在的数据来说话,要真正做到从市场的真实需求和用户体验出发。只有精确采集信息,才能准确把握市场,精准把握用户的真实需求。
精准的投放体系
精准投放是大数据营销实施过程的核心。精准投放是建立在真实有效的数据信息基础上。企业通过大数据营销是想获得更高的ROI,这也就要求企业对采集到的数据进行系统分析,对用户进行有效的细分,再根据市场信息和动向有效整合企业资源并及时开展企业活动,实现与其市场需求、用户需求的精准匹配。
TalkingData拥有强大的数据管理平台(DMP),通过对超过20亿移动受众人群数据进行汇聚、清洗、萃取,结合一系列算法模型,输出人群分类标签数据体系和受众人群分析工具。企业客户可以通过对人群的二次组合,构建出满足业务需求的多元化精准受众人群;也可以对目标受众进行多维度的画像分析洞察,为潜客发掘、用户维护、品牌推广、口碑扩散等营销环节,提供客观的数据依据和触达的媒介方案,最终达到提升整体ROI的目标。
通过大数据的精准投放,一方面解决用户需求,获得用户的好感,提升转化率和ROI以及提高用户忠诚度;另一方面企业通过大数据营销,可以有效提升品牌价值,不断扩大品牌营销力度,保证企业的良性发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26