
能用SPSS进行差异显著性分析吗
请问能用SPSS进行差异显著性分析吗? 具体用哪个命令啊? 如果不行,还有其他办法进行差异分析吗?
比如说我有几组数据:一组是空白对照 ,另外几组是不同浓度的处理组, 我想对各个处理组与空白组进行差异分析,用哪个命令,如何分析最好呢?
可以,根据你要比较的对象,选用不同的方法。analyze-compare means或者analyze-general linear model 有不同的子菜单,用哪一个,需要根据您的数据咯
用均值 检验吧,如果你的数据合适的话,analyze-compare means-然后根据你数据情况选择合适的检验,如果显著性概率小于你所设定的置信度,则认为有差异,否则认为没有差异
最好使用OneWay ANOVA,既可以分析差异性大小,探讨不同浓度的差异性,进行多重比较。
analyze-compare means——OneWay ANOVA,Contrast可以设置,Posthoc设置多重比较的方法。
把数据输入spss中,如果为独立样本,那么就一列输入组别,定义变量第一组为1,第二组为2,以此类推,第二列输入数据,输入每个数据,这样就可以得到两列数据,然后选择spss中analyze下的compare means中的one-way ANVOA,把数据那列点进dependent list那栏,组别点进factor。点击ok。如果你要进行事后检验,点击ok前先选择post hoc,选定lsd,然后再点ok。
如何用spss做差异的显著性分析
数据太少,不能作的,不符合统计要求
如果做的话,用卡方检验
我建议你用卡方检验 就是crosstabs项 这是专门进行率的比较的 事先要把数据呈标准的状态建立在spss中 如何建立没法讲 自己看一下专业书
具体操作步骤:spss–analyze–descriptive statistics–crosstabs
然后出现对话框 选入行与列 点开下面的statistics子对话框 选中chi-squrie和kappa 点continue 然后ok 你就看到结果了
结果中看sig值即可 就是p值
数据应该要正态分布,如果不是的话可以作下变换处理,使数据服从正态分布即可。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26