
数据分析实战:如果我为共享单车类产品做数据分析
很多人都在问:如何提高数据分析能力?笔者(申悦)认为一方面要掌握基本的分析框架和分析思路,另一方面就要不断实践。一种很好的实践方式就是:分析行业内典型产品的设计、运营思路,假设自己就是该公司的数据产品经理,你会如何对其进行分析。
前一阵在“在行”上就遇到一个案例,学员想了解共享单车类产品的数据分析思路,本文就针对这个案例整理一二,供读者参考。如果读者中有摩拜或ofo的同学,麻烦帮我参谋下思路是否靠谱哈^_^。
步骤一:明确用户是谁
以摩拜为例,其产品可能的目标用户有2类:用车方、维护方。用车方就是车辆使用者,维护方则是车辆提供者。用车方的诉求是随时随地有车骑,且付费后骑行体验要良好。维护方的诉求则是以最少的车辆服务最多的用车方,并从用车中得到收益。
步骤二:明确用户使用场景
从维护方角度看,其简单场景如下图:
从用车方角度看,其场景如下图:
明确使用场景、使用流程的原因在于:第一,我们的数据都来源于这些场景中;第二,我们需要通过分析这些数据,让用户每一步过程都顺利进行,避免流失;第三,还要让企业利益最大化,从而进一步让利用户。
步骤三:明确分析目标
经过人群定义和流程梳理,针对共享单车,我们可简单将分析目标定义为:
提高成功骑行次数——用户利益最大化
提高毛收入——企业利益最大化
步骤四:拆解目标
数据分析的思路就是将目标层层拆解,从每个子指标中发现问题。基于以上目标,可拆解为:
成功骑行次数 = app启动次数 x 每启动扫码开锁率 x 成功开锁率 x 成功结束率
成功骑行次数 = 每人每日行程次数 x 人数
毛收入 = 充值收入 – 投入成本 = ((每充值金额 – 欠费金额) x 充值次数) – ((每车成本 + 维护费用) x 车辆数量 )
注:以上拆解因人而异,因经验而异,从不同角度可得出不同公式,具体要根据实际运营目标进行调整。
步骤五:明确数据观察者角色
拆解出的子指标,需要呈献给不同角色的人群查看,以此来进行不同维度的分析,因此在分析前也要明确这些角色,例如:
决策层:关注核心指标、交易指标、时段趋势
维护组:关注车辆状态、位置、轨迹、故障率、用户反馈
运营组:关注骑行次数、充值情况、押金情况、欠费情况、信用积分
产品组:关注骑行流程、交互路径、用户反馈
开发组:关注请求失败率、App崩溃数
步骤六:明确数据度量
依据不同角色,可将拆解出的子指标进一步汇总整合,组成不同的统计度量值。这一过程中有一点要注意:每产出一份度量值,都要给出目的。也就是说看这个度量值能得出什么结论。没有结论的数值是没有意义的。如下所示:
核心数据
评估推广效果——注册用户数
评估活跃程度——启动次数、活跃用户数
评估业务健康程度——成功骑行次数、每启动骑行率(用车密度)
评估现金流健康程度——总入账、总出账、充值金额、欠费金额、车辆总成本
评估车辆健康程度——车辆总数量、故障车数量
运营数据
评估推广效果——注册用户数、下载点击数
评估活动运营效果——充值用户数、邀请注册用户数、成功骑行次数、积分增长/消耗量
评估用户质量——行程次数排行、骑行距离排行、信用积分排行、充值排行、欠费人数、认证人数
维护数据
车辆使用总览——车辆总数+车辆位置实时呈现——未使用/使用中/故障中/预约中
评估车辆使用率——使用车辆数/总车辆数
评估车辆故障率——故障车辆数/总车辆数
评估车辆闲置率——连续N日未使用车辆数/总车辆数,以及闲置车辆位置
产品数据
评估需求满足程度/车辆调度效果——每启动骑行率
评估产品使用情况——成功骑行次数、异常骑行次数、平均骑行里程、平均骑行时长、日骑行频率、启动次数、平均骑行天数、预约操作成功率
评估产品操作效果——充值路径、注册路径
评估产品使用异常情况——平均每次开锁成功率
评估用户骑行习惯——骑行轨迹聚合,为调度路线做参考
评估用户满意度——用户反馈好评数/用户反馈数
财务数据
用户金额:充值流水、充值次数、充值金额、充押金金额、余额不足金额、押金退款金额
维修金额:车辆生产成本、车辆维修成本
注:以上数据仅为举例,要根据实际需求调整。
步骤七:明确数据维度
有了度量值,就要思考可以通过哪些维度查看这些值,也就是要定义数据维度。常见的维度包括:
按时间:小时、日、周、月、季度、年度……
按地区:按省、按市、按区……
按渠道:邀请注册、扫码注册、广告点击注册……
按类型:已认证/未认证、已充值/未充值……
按位置:GPS地图定位
以上维度也要再根据需求不断调整、扩展、优化。
总结:
以上七步进行完毕,一个基本的共享单车数据分析框架就搭建完毕了。作为数据产品经理,一方面可基于此设计统计系统功能;另一方面可依此对不同人群定期产出数据分析报告了。但以上步骤只是完成了冰山一角,如何在观察数据后,对数据的变化合理归因,并对产品、运营策略的优化提出改进意见,才是真正需要深入研究的!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18