
前几天拿到了数据挖掘基础教程一书,感觉部分算法是基于统计学的原理的,而统计学是可以通过Oracle来实现。
其次是为了观看德国vs西班牙的世界杯比赛,来了一点小小的兴致,动手写点小脚本。不过本文只是为了实现而实现的,没有做任何优化,有兴趣的话,大家可以玩一玩。
http://baike.baidu.com/view/1076817.htm?fr=ala0_1
关联规则是形如X→Y的蕴涵式,
其中且, X和Y分别称为关联规则的先导(antecedent或left-hand-side, LHS)和后继(consequent或 right-hand-side, RHS) 。
关联规则在D中的支持度(support)是D中事务同时包含X、Y的百分比,即概率; =X^Y/D
置信度(confidence)是包含X的事务中同时又包含Y的百分比,即条件概率。 =(X^Y)/X
关联规则是有趣的,如果满足最小支持度阈值和最小置信度阈值。
若给定最小支持度α = n,最小置信度β = m,则分别通过以上的X^Y/D和(X^Y)/X,可获知是否存在关联
使用的原始数据
反范式后的数据
待统计项
--创建各个购买单元项视图
create view distinct_trans as select distinct tranobject from purchase;
--创建各个事务内部的购买单元项
create view all_trans as
--可以用wm_concat函数
SELECT tranid,MAX(tranobjects) tranobjects
FROM (select tranid,WMSYS.WM_CONCAT(tranobject) OVER(PARTITION BY tranid ORDER BY tranobject) tranobjects
from purchase
)
group by tranid;
--也可以用sys_connect_by_path函数
create view all_trans as
select tranid,substr(tranobjects,2) tranobjects from --格式化前面的逗号和空格
(
select distinct tranid,FIRST_VALUE(tranobjects) OVER(PARTITION BY tranid ORDER BY levels desc ) AS tranobjects --保留最大的那个
from
(
select tranid,sys_connect_by_path(tranobject,',') tranobjects,level levels --各购买事务的内部排列组合
from purchase
connect by tranid=prior tranid and tranobject
)
);
--对所有购买单元项进行排列组合,即数据挖掘的X^Y项
create view all_zuhe as
select substr(sys_connect_by_path(tranobject,','),2) zuhe
from (select distinct tranobject from purchase)
connect by nocycle tranobject
select * from all_zuhe
create view full_zuhe as
select a.zuhe X,b.zuhe Y from all_zuhe a,all_zuhe b
where instr(a.zuhe,b.zuhe)=0 and instr(b.zuhe,a.zuhe)=0
and not exists(select 1 from distinct_trans c
where instr(a.zuhe,c.tranobject)>0 and instr(b.zuhe,c.tranobject)>0)
select * from full_zuhe
create or replace view tongji as
select xy,xy_total,x,x_total,y,y_total,transtotal from
(
select y||','||x xy,
(select count(*) from all_trans a where instr(a.tranobjects,c.x||','||c.y)>0 or instr(a.tranobjects,c.y||','||c.x)>0) xy_total, --包含xy的事务数
y,
(select count(*) from all_trans b where instr(b.tranobjects,c.y)>0) y_total, --包含y的事务数
x,
(select count(*) from all_trans b where instr(b.tranobjects,c.x)>0) x_total, --包含x的事务数
d.transtotal --总事务数
from full_zuhe c,(select count(distinct tranid) transtotal from purchase) d
order by xy_total desc,x_total desc
)
select * from tongji where xy_total>=3 and y_total>=3
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27