京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在做用户行为分析时,我们需要用到哪些应用指标
我们知道用户行为数据的获取是由用户在网页或者APP的点击产生的,这些在网页或者APP的行为数据能够用来判断用户对产品的喜好及期望,所以分析用户的行为数据对于我们做精准营销以及迭代出符合用户喜好的产品非常重要。
但是,用户行为数据又那么多,我们很难做到一个个不遗漏的去分析,所以我们很有必要对用户行为数据进行一个简单而又方便全面的划分,以便我们处理和分析这些用户行为数据。
一、用户行为的分类及价值
我们知道由点击流数据衍生出了很多行为指标,比如:访问频率、平均停留时长、消费行为、信息互动行为、内容发布行为等。但是这些指标有太复杂,不利于我们进行快速的对用户进行分析,那么该如何对这些指标进行有效而又简单的而划分,进而有利于我们进行快速的分析用户呢?
1、用户行为的分类
本着简单又全的原则,我们将用户行为数据分为三类:
黏性;
活跃;
产出。
为什么这样划分呢?
这三个指标可以包含很多其他细分的行为指标,利用这三大指标进行系统而又简洁的划分,不遗漏的分析其他衍生出的指标将有助于我们避免累赘及减少工作量。而这些指标可共同衡量用户在网页及APP中的行为表现,进而去区分用户的行为特征,对用户打分,再去对不同类型的用户进行分群精细化营销推广,提升运营推广的价值。
用户行为分类如下图:
2、用户行为指标意义
1)黏性:主要关注用户在一段时间内持续访问的情况,是一种持续状态,所以将“访问频率”、“访问间隔时间”归在黏性的分类;
2)活跃:考察的是用户访问的参与度,一般对用户的每次访问取平均值,将“平均停留时间”、“平均访问页面数”用来衡量活跃指标;
3)产出:用来衡量用户创造的直接价值输出,例如电商 网站的“订单数”、“客单价”,一个衡量频率,一个衡量平均产出 的价值。
当然,可以基于用户行为的三大类:黏性、活跃、产出,在每个大类上再去添加不同的行为指标,只要能够体现其分析价值并且不重叠。比如,“黏性”指标里面包含了“访问频率”、“访问间隔时间”,访问次数越多,那相应的访问页数也就越多,如果在“黏性”里面加上“PV”就存在相关联性,进而对分析结果就产生影响,所以这里选择“平均访问页面数”,并把它放在“活跃”里面。即基于行为分类和指标的独立性,才能体现不同的分析价值。
二、基于用户行为分析的细分
根据用户行为的分类:黏性、活跃、产出,我们可以判断用户对产品的价值贡献,但是对于这些用户只根据这些指标能够判断他们的喜好吗?显然,这是不够的,我们还得去研究这些用户的特征及对产品的期望,再去做精准营销。那么,如何分析用户的喜好呢?
用户分类
我们知道不同的用户对网站内容是有不同的期望的,我们只有将用户进行细分,才能针对性的做出推荐。这里主要将用户细分成三大类:
流失用户/留存用户;
新用户/老用户;
单次购买用户/二次购买用户。
基于这3类细分,对每个分类的用户购买商品情况进行比较,明确哪些商品更加符合预期。以电商网站举例:
2.1 流失用户/留存用户举例
如下图:
算出流失用户比例后,我们只是知道每个商品的流失用户比例,但并不能评价这个商品是否对留住用户有促进作用,或者在一定程度上反而使得用户数量下降。我们只有设定一个电商网站商品的总体平均流失率,然后拿流失用户比例与总体平均流失率做对比,最后才能得出相应的结论。
那么,表格中的“与总体比较”数值是怎么计算得到的呢?通常,我们会根据网站的情况及经验设定一个总体平均流失率,这里设为56%,以A商品为例,计算的结果就是:
(58.13%-56%)/565=3.80%。
使用同样的方法可以把其他商品“与总体比较”的值算出来。由计算我们知道:
1)当结果为正数时,说明用户流失率大于总体平均流失率,此款商品表现比较差,不适合留住用户,表格中标为红色;
2)当计算结果为负数时,说明用户流失率小于总体平均流失率,此款商品表现较好,适合留住用户,表格中标为蓝色。
很明显,这样分析对运营很有指导性,对于能够留住用户的商品进行重点推荐,对于不能留住用户的商品进行优化或者下架。
2.2 新用户/老用户举例
继续用上面的例子来分析新用户/老用户的购买喜好。如下图:
从表格中知道,购买D商品的用户比例明显较低,F商品更符合用户口味。说明这样细分对新老客户的区分定向推广是有好处的,当然这要注意渠道推广的差异,比如把新用户放在新用户比较集中的Landing Page中显示,那么自然新用户购比例会较高。
2.3 单次购买用户/二次购买用户举例
我们知道用户的首次购物体验很重要,因为这会直接影响用户是否会进行二次或多次购买,或者成为网站的忠实粉丝。
举个例子,如下图:
由表格知道,B和F促进用户二次购买的表现不大好,然后我们需要分析原因,有可能是商品的质量或商品的使用问题影响了用户的满意度,也有可能是销售或者营销的问题,阻碍了用户再次购买的脚步,这里需要我们进行深入的研究。
三、总结
知道如何简单而又全面的进行用户分类后,然后再对用为行为细分,用户细分分析是用于比较的,比较是为了反映差异进而做出调整优化的,所以,细分的最终目的是指导运营决策,这也是数据分析的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第四章 战略与业务数据分析考点43:战略数据分析基础考点44:表格结构数据的使用考点45:输入数据和资源 ...
2026-02-22CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10