
大数据与个人征信市场发展
互联网、移动互联网产生大数据,云计算为大数据挖掘提供了技术支撑,信息技术发展为金融服务长尾客户提供了可能,也为普惠金融的发展提供技术支撑。金融服务需要以征信为基础,市场催生了需求,也唤醒市场对投资征信业的热情。在互联网、大数据、云计算的大背景之下,中国的征信业应该如何发展?在网络个人信息无处不在的情况下,如何处理好个人信息安全与征信业发展的关系?市场翘首以待的个人征信牌照发放还有哪些认识需要统一?
大数据背景下征信无处不在,很多人也都在谈征信,但是,大家实际是在不同层次上使用不同概念谈论征信。到底应该怎样认识当前中国的征信市场?
第一,个人信用征信。传统个人信用征信是个人信用状况的评估,与个人的资金活动相联系,反映个人债务状况和资金延迟支付状况,包括缴费、纳税等。凡是与个人资金运作有关系,一般来说应该算作个人信用征信。在国外,谈到个人信用征信,一般有很多维度,美国使用最多的信用评分(FICO)主要参考付款历史、欠款数据、信用历史时长、新的信用帐户、使用的信用帐户五个维度信息,全部与资金有关。但是,近些年来,个人征信机构也在参考资金收付有关的个人行为数据,包括水电费缴纳,等等。
第二,个人诚信。现在社会上经常提到的所谓征信,其实并不完全是信用征信,而是涉及很多诚信行为。个人诚信是对个人契约精神的评估,与个人合同履约状况相联系,与信用评估有关联,但不是决定性因素。社会诚信建设很大程度是道德规范,让守信者方便,失信者受惩戒。现在各行各业发布黑名单、白名单,其实有很多信息中他们的行为与资金并没有完全关系,而是反映的履约情况。
第三,行为征信。互联网、大数据和云计算使得数据拥有者能够对客户行为偏好做出分析,对客户的偿债能力、支付能力、履约和欺诈倾向有所分析,用好大数据可能有助于反欺诈和提供差异化服务以及市场营销。但是,对金融授信的风控作用有待检验。现在很多人在挖掘的是行为数据,这些行为数据反映的行为偏好不一定能够完全用于金融授信,但是可以对金融授信有一些参考。
第四,数据服务。这类服务提供者不直接掌握数据资源,主要是围绕大数据征信提供第三方技术和服务,包括大数据挖掘,在数据源上层完成数据分析和风险控制。很多拥有数据的公司都想做大数据分析,也有一些技术公司想对这些大数据做分析服务。这些和金融界所说的典型的个人信用征信不完全一致,有关联但不是同一个事情。
上面就是对当前社会谈到个人征信业时涉及到的四个层次的分析。我认为针对个人征信市场的不同层次、不同需求,应该实行差异化监管。个人信用征信主要服务于金融授信活动。
世界近百年发展历史证明,只有独立第三方开展个人信用征信才更有公信力,也才更公正。为金融授信服务的个人信用征信要由独立第三方负责,因为只有这样做才没有利益冲突或利益关联,因而没有行为扭曲。为了使自己的信用分数提高一些,有人是不是可能有意多去使用与征信因素有关的服务?这种行为社会上是存在的,背后其实就隐含着一定行为扭曲。
独立第三方数据源清晰,可以通过合同、外部接口规范、数据库审计等方式管理,数据留存可以使信息可追溯、可异议、可纠错,有利于保护个人信息安全。在互联网时代,每一个人的信息都可能上网,保护不好就会对个人隐私造成侵犯。在数据化时代,个人数据就是个人的无形财产,应该得到很好的保护。独立第三方征信也可以从技术手段上更好保证信息安全。独立第三方没有利益竞争,有利于解决信息孤岛问题。如果每一个信息源都想靠自己掌握的信息和别人竞争,有利益竞争就会导致信息不共享,容易形成信息孤岛。个人信用征信由第三方评估,更容易形成统一认识。
独立第三方的标志是什么?现在最大的争议点就在于此。给出几个标准,第一,公司治理独立,高管、资产、财务、人员独立不受个别股东控制,有一个独立公司治理结构,在公司独立运作过程中不能被个别股东操纵。第二,数据来源多元独立,分析模型独立。第三,业务独立,不参与信息源和使用者同范围的业务。业界讨论该问题时有不同意见。香港证监会所属香港证券及投资学会出版的信贷评级服务及惯例,将独立性和利益冲突界定为“业务不受现有或潜在的有关业务关系,或与任何其他方的任何业务关系,或潜在业务关系的影响,或因不存在上述关系而受影响”。这句话通俗说,因为做评估涉及相关业务,或相关人员,使得业务受到影响,或者说没有相关业务和相关人员,也受到影响,因为与他们没有关系,所以不能够受到公平公正待遇,这也是一种影响。
公共机构与市场机构协同发展,要发挥中国人民银行征信中心公共平台作用,向社会提供公平公正的信用征信服务。市场化独立第三方从事个人信用征信,市场化机构从事专项个人征信服务及数据服务。市场化个人征信服务还是应该分层次。
个人征信市场监管有自身原则。第一,保护个人信息知情权,让被征信主体客户知道征信机构收集了哪些信息,客户要有选择权、拒绝权和遗忘权,信息可追溯、可异议,可纠错。给出评分,也要公布评分要素,到底是怎么评估的,外界要知道评估方法,如果对评分有不同意见可以提出异议,错了要可纠错。
第二,要确保个人信息安全不泄露。通过规章制度保障、物理安全保障、技术安全保障,严格运营监管个人数据的授权与使用,确保个人信息安全不泄露。个人信息也是个人财产,而服务机构在服务过程中也做了很多工作,因此,数据在某种程度上是服务机构和个人共同拥有的。
如果个人对自己的信息提出查询,或者授权其他机构查询,拥有数据的人或单位应该允许查询,而且应该为查询提供便利。既然数据服务机构提供了服务,某种程度上也有数据一定所有权,在不暴露个人隐私、脱敏之后可以加工信息,做商业化处理,这也应该受到法律保护。《网络安全法》对此也予以确认,但是前提条件是必须脱敏,不能涉及具体个人,比如张三李四在干什么,关注某个群体有怎样行为特征,类似信息可以加工处理。
第三,要维护市场公开公平公正有序竞争,对不同层次的征信机构实行差异化监管。
在监管方面,我认为个人征信机构工商登记应该实行“先证后照”。个人征信服务涉及个人信息安全和隐私保护,必须有金融市场准入,实行“先证后照”。企业征信由于不涉及企业商业秘密且企业信息公开性强,可实行工商登记后的备案管理。投资企业征信的公司到工商注册,然后到监管当局、人民银行备案就可以。但是个人征信业必须是批准之后才能开展。目前人民银行批准了八家机构在做个人征信准备工作。因为没有管理经验,必须通过实践总结经验。个人征信应该是先到监管当局获得许可,然后再到工商登记。当然,这个问题现在也有争议,希望能够听到各方面的意见。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26