京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据的无量纲化处理和标准化处理的区别是什么
请教:两者除了方法上有所不同外,在其他方面还有什么区别?
解答:
标准化处理方法是无量纲化处理的一种方法。除此之外,还有相对化处理方法(包括初值比处理)、函数化(功效系数)方法,等等。由于标准化处理方法可以与分布函数结合,所以应用比较广泛。如果指标有正、逆之分,功效系数方法也不错。初值比处理方法主要应用在灰色系统关联分析方面。
标准化并不能解决正向化问题,如果要将数据正向化,需要其他无量钢化的方法,例如我要将数据全部变成0到100之间的数,那么可以用compute计算公式:

(x-min(x))/(max(x)-min(x))*100
数据的标准化处理
(1)数据的中心化处理
数据的中心化处理是指平移变换,即
该变换可以使样本的均值变为 0,而这样的变换既不改变样本点间的相互位置,也
不改变变量间的相关性。但变换后,却常常有许多技术上的便利。
(2)数据的无量纲化处理
在实际问题中,不同变量的测量单位往往是不一样的。为了消除变量的量纲效应,
使每个变量都具有同等的表现力,数据分析中常用的消量纲的方法,是对不同的变量进
行所谓的压缩处理,即使每个变量的方差均变成1,即
还可以有其它消量纲的方法,如
(3)标准化处理
所谓对数据的标准化处理,是指对数据同时进行中心化-压缩处理,即
用在哪方面 数理统计分析试验结果、鉴别各因素对结果影响程度的方法称为方差分析(Analysis Of Variance),记作ANOVA。
我们已经作过两个总体均值的假设检验,如两台机床生产的零件尺寸是否相等,病
人和正常人的某个生理指标是否一样。如果把这类问题推广一下,要检验两个以上总体
的均值彼此是否相等,仍然用以前介绍的方法是很难做到的。(均值法)
从用几种不同工艺制成的灯泡中,各抽取了若干个测量其寿命,要推断这几种工艺制成的灯泡寿命是否有显著差异;用几种化肥和几个小麦品种在若干块试验田里种植小麦,要推断不同的化肥和品种对产量有无显著影响。(方差分析)。
模型
方差分析一般用的显著性水平是:取α = 0.01,拒绝0 H ,称因素A 的影响各水平的差异显著,取α = 0.01,不拒绝0 H ,但取α = 0.05,拒绝0 H ,称因
素A的影响显著;取α = 0.05,不拒绝0 H ,称因素A 无显著影响。
例子 例1 为考察5 名工人的劳动生产率是否相同,记录了每人4 天的产量,并算出其平均值,如表3。你能从这些数据推断出他们的生产率有无显著差别吗?
工人
天 1 A 2 A 3 A 4 A 5 A
1 256 254 250 248 236
2 242 330 277 280 252
3 280 290 230 305 220
4 298 295 302 289 252
平均产量269 292.25 264.75 280.5 240
解 编写程序如下:
x=[256 254 250 248 236
242 330 277 280 252
280 290 230 305 220
298 295 302 289 252];
p=anova1(x)
求得p = 0.1109 >α = 0.05,故接受0 H ,即5 名工人的生产率没有显著差异。
曲线拟合(判断,估计,两者的关系)
线性最小二乘法 已知一组(二维)数据,即平面上的n个点(xi , yi) ,
i = 1,2,L,n,… i x 互不相同,寻求一个函数(曲线) y = f (x),使f (x)在某种准则下与所有数据点最为接近,即曲线拟合得最好。
模型
例5 某乡镇企业1990-1996 年的生产利润如表5。
表5
年份 1990 1991 1992 1993 1994 1995 1996
利润(万元) 70 122 144 152 174 196 202
试预测1997 年和1998 年的利润。
解 作已知数据的的散点图,
x0=[1990 1991 1992 1993 1994 1995 1996];
y0=[70 122 144 152 174 196 202];
plot(x0,yo,’*’)
发现该乡镇企业的年生产利润几乎直线上升。因此,我们可以用1 0 y = a x + a 作为
拟合函数来预测该乡镇企业未来的年利润。编写程序如下:
x0=[1990 1991 1992 1993 1994 1995 1996];
y0=[70 122 144 152 174 196 202];
a=polyfit(x0,y0,1)
y97=polyval(a,1997)
y98=polyval(a,1998)
求得20 1 a = , 4
0 a = −4.0705×10 ,1997 年的生产利润y97=233.4286,1998 年的生产利润为y98=253.9286 最小二乘优化(mtalab cftool)
回归分析
用途 简单地说,回归分析就是对拟合问题作的统计分析。
前面我们讲过曲线拟合问题。曲线拟合问题的特点是,根据得到的若干有关变量的
一组数据,寻找因变量与(一个或几个)自变量之间的一个函数,使这个函数对那组数
据拟合得最好。通常,函数的形式可以由经验、先验知识或对数据的直观观察决定,要
作的工作是由数据
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27