
数据的无量纲化处理和标准化处理的区别是什么
请教:两者除了方法上有所不同外,在其他方面还有什么区别?
解答:
标准化处理方法是无量纲化处理的一种方法。除此之外,还有相对化处理方法(包括初值比处理)、函数化(功效系数)方法,等等。由于标准化处理方法可以与分布函数结合,所以应用比较广泛。如果指标有正、逆之分,功效系数方法也不错。初值比处理方法主要应用在灰色系统关联分析方面。
标准化并不能解决正向化问题,如果要将数据正向化,需要其他无量钢化的方法,例如我要将数据全部变成0到100之间的数,那么可以用compute计算公式:
(x-min(x))/(max(x)-min(x))*100
数据的标准化处理
(1)数据的中心化处理
数据的中心化处理是指平移变换,即
该变换可以使样本的均值变为 0,而这样的变换既不改变样本点间的相互位置,也
不改变变量间的相关性。但变换后,却常常有许多技术上的便利。
(2)数据的无量纲化处理
在实际问题中,不同变量的测量单位往往是不一样的。为了消除变量的量纲效应,
使每个变量都具有同等的表现力,数据分析中常用的消量纲的方法,是对不同的变量进
行所谓的压缩处理,即使每个变量的方差均变成1,即
还可以有其它消量纲的方法,如
(3)标准化处理
所谓对数据的标准化处理,是指对数据同时进行中心化-压缩处理,即
用在哪方面 数理统计分析试验结果、鉴别各因素对结果影响程度的方法称为方差分析(Analysis Of Variance),记作ANOVA。
我们已经作过两个总体均值的假设检验,如两台机床生产的零件尺寸是否相等,病
人和正常人的某个生理指标是否一样。如果把这类问题推广一下,要检验两个以上总体
的均值彼此是否相等,仍然用以前介绍的方法是很难做到的。(均值法)
从用几种不同工艺制成的灯泡中,各抽取了若干个测量其寿命,要推断这几种工艺制成的灯泡寿命是否有显著差异;用几种化肥和几个小麦品种在若干块试验田里种植小麦,要推断不同的化肥和品种对产量有无显著影响。(方差分析)。
模型
方差分析一般用的显著性水平是:取α = 0.01,拒绝0 H ,称因素A 的影响各水平的差异显著,取α = 0.01,不拒绝0 H ,但取α = 0.05,拒绝0 H ,称因
素A的影响显著;取α = 0.05,不拒绝0 H ,称因素A 无显著影响。
例子 例1 为考察5 名工人的劳动生产率是否相同,记录了每人4 天的产量,并算出其平均值,如表3。你能从这些数据推断出他们的生产率有无显著差别吗?
工人
天 1 A 2 A 3 A 4 A 5 A
1 256 254 250 248 236
2 242 330 277 280 252
3 280 290 230 305 220
4 298 295 302 289 252
平均产量269 292.25 264.75 280.5 240
解 编写程序如下:
x=[256 254 250 248 236
242 330 277 280 252
280 290 230 305 220
298 295 302 289 252];
p=anova1(x)
求得p = 0.1109 >α = 0.05,故接受0 H ,即5 名工人的生产率没有显著差异。
曲线拟合(判断,估计,两者的关系)
线性最小二乘法 已知一组(二维)数据,即平面上的n个点(xi , yi) ,
i = 1,2,L,n,… i x 互不相同,寻求一个函数(曲线) y = f (x),使f (x)在某种准则下与所有数据点最为接近,即曲线拟合得最好。
模型
例5 某乡镇企业1990-1996 年的生产利润如表5。
表5
年份 1990 1991 1992 1993 1994 1995 1996
利润(万元) 70 122 144 152 174 196 202
试预测1997 年和1998 年的利润。
解 作已知数据的的散点图,
x0=[1990 1991 1992 1993 1994 1995 1996];
y0=[70 122 144 152 174 196 202];
plot(x0,yo,’*’)
发现该乡镇企业的年生产利润几乎直线上升。因此,我们可以用1 0 y = a x + a 作为
拟合函数来预测该乡镇企业未来的年利润。编写程序如下:
x0=[1990 1991 1992 1993 1994 1995 1996];
y0=[70 122 144 152 174 196 202];
a=polyfit(x0,y0,1)
y97=polyval(a,1997)
y98=polyval(a,1998)
求得20 1 a = , 4
0 a = −4.0705×10 ,1997 年的生产利润y97=233.4286,1998 年的生产利润为y98=253.9286 最小二乘优化(mtalab cftool)
回归分析
用途 简单地说,回归分析就是对拟合问题作的统计分析。
前面我们讲过曲线拟合问题。曲线拟合问题的特点是,根据得到的若干有关变量的
一组数据,寻找因变量与(一个或几个)自变量之间的一个函数,使这个函数对那组数
据拟合得最好。通常,函数的形式可以由经验、先验知识或对数据的直观观察决定,要
作的工作是由数据
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26