京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅谈大数据为何解决不了道路交通拥堵
如今大数据被赋予了神一样的能量,好像只要是大数据当道就可以解决一切难题。这种想法显然不对,即便大数据可以帮助我们了解的更多,也不能预测到我们想象中的程度。

浅谈大数据为何解决不了道路交通拥堵
如今大数据被赋予了神一样的能量,好像只要是大数据当道就可以解决一切难题。这种想法显然不对,即便大数据可以帮助我们了解的更多,也不能预测到我们想象中的程度。
智能手机已经很普及,大多数的人们都拿着具有定位功能的手机,而4G网络又是这样的覆盖广泛,以至于我们每个人的行动时时刻刻都被运营商、互联网应用提供商所“监控”,这些数据被整合脱敏之后可以成为大数据分析的基本信息来源,从而为交通和出行提供管理上的帮助。
媒体报道,2006年,斯德哥尔摩与IBM合作,在通往市区的18个路段安装了传感器和照相机。搭载了感应装置的汽车在通过该路段时,系统会自动识别该车辆,并对其征收通行费。没有搭载感应装置的汽车通过该路段时,系统会自动识别照相机拍摄的车头照片上的车牌号码,确认汽车所有者,并对其征收通行费。该系统实施后,斯德哥尔摩市区交通量降低了25%,二氧化碳排放量减少了14%。
我们很多人都乐观的估计,主要信息足够,通过大数据分析来实现的智慧交通系统就会帮助我们做出理性的规划,从而,路路畅通。
理想很美好,可现实却很残酷。即便是各部门的大数据应用都起到了作用,国庆节出行的道路却依然拥堵,且没有任何改善的迹象。很多人都体会了去年10月1日各地道路上的堵车盛况,甚至有乘客下车在高速路上开始遛狗。在这一刻,大数据选择了失灵。
实际上,很多公司通过大数据已经对交通拥堵做出了预测。比如,去年全国最堵的京藏高速本来预计从30号到1号下午拥堵超过24小时,十一的返程高峰会出现在长假结束前一天下午3点到长假最后一天的23点。但这些数据都没有能够帮到很多人,大多数人还是会一如既往的走上拥堵的道路。
大数据肯定不是万能的,即便再强,也只是基于现实数据进行的一种分析,可以给我们提供参考,但这种参考的价值却不应该被无限制的放大。比如,我们可以提前通过大数据分析进行预警,那条道路会拥堵,会拥堵到什么程度,可如果条条大路都是超负荷的,大数据的提前预警作用也就失效了。
大数据可以帮助我们提前规划路线,避开拥堵的道路,但一旦道路全在拥堵,我们就失去了选择的机会。在这种情况下,“理性的人”应该选择呆在家里,这样就可以让自己不被堵在路上,也不会造成更大的拥堵,这样选择的人多了,道路可能就通畅了。问题是,很多人都这样想,大家都觉得别人会不出行,结果,群体性理性的选择带来了更大的拥堵。还有一种情况是,大家只有这个时候出行,再挤也要去,否则就没有别的机会可以选择。
因此,大数据的分析结果在群体性公共知识的面前,一定会变得毫无意义,甚至会起到负面作用。很多人认为,信息不对称的是导致交通拥堵的重要原因,而在实践中,信息太对称,也一样会导致拥堵。
我们获得的大数据也并非全面,还有很多人并不使用智能手机的定位功能,一些大数据分析公司无法获得数据。斯德哥尔摩是通过在公共交通工具上安装传感器,分析这些传感器数据,来掌握道路的拥挤情况,这种方式对城市道路很实用,而对于高速公路来说,目前大数据分析普遍采用的用户个人的智能手机定位数据并不可靠。
大数据分析也是十分复杂科学的工作,任何的理论或操作上的微小失误都可能造成分析结果的被错误使用。即便获得了用户数据,在分析的方法和使用的策略上也存在不足,难以充分发挥大数据的价值,这也造成了分析上的偏差,错误的引导会带来局部更为严重的拥堵。
与此同时,大数据在偶发事件面前也无能为力。在国庆节这样的大车流的情况下,一起偶然发生的交通事故就可以造成蝴蝶效应,由此带来一个路段的拥堵,然后是整个路段的拥堵,接着会造成更多辐射的路段上的连环拥堵的发生。这种事故是不可预测的,其后果也很难提前预知,而节日的道路变通的余地很小,一旦发生突发事件,交通拥堵的严重程度就会超出想象。
实事求是的说,大数据确实可以提升道路管理水平,但大数据却无法解决信息沟通中的群体错位决策,也无法解决超出符合的刚性需求到来的道路绝对拥堵,更没有办法应对随时可能出现的随机性的事故影响。大数据对于节假日期间的交通拥堵问题,绝对是有心无力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20