京公网安备 11010802034615号
经营许可证编号:京B2-20210330
总体平方和残差平方和,解释平方和 ,F检验值 F检验P值 判定系数 调整判定系数 均方根误差 变量系数 标准误差 t检验值 t检验P值 置信区间 这些值怎么看????专业老师让我们分析,大神有会的吗?先谢谢了
总体平方和:在你整个回归结果的左上角部分,SS和total所确定的数值就是,也就是9.00072(没写全,后面部分我没抄,你如果需要更高精度回上表看……)
残差平方和:在你整个回归结果的左上角部分,SS和residual所确定的数值就是,也就是0.1374
解释平方和:在你整个回归结果的左上角部分,SS和model所确定的数值就是,也就是8.8698
F检验值:在你整个回归结果的右上角部分,F(2,7)对应的值225.94——这个值越大越好,回归总体越显著
F检验P值:在你整个回归结果的右上角部分,P>F对应的值0——这个值越小越好,0说明回归总体而言非常显著
判定系数:应该就是R方吧,右上角那个R-squared 0.9847——这个值是解释平方和除以总体平方和得出的,越大则回归的拟合度越高
调整的判定系数:右上角那个adj-R-squared 0.9804——这个值是将变量数目考虑后略加变动所计算出的R方(需要这个是因为当解释变量很多时,即使拟合度没有区别,R方也会很高),同样是越大回归的拟合度越高
均方根误差:右上角那个root-MSE0.1401,它是左上角Residual-MS的开方变量系数:下面方框里coef所对应的项——越大则“实际显著性”越高(就是说影响在绝对值上越大)
标准误差:下面方框里std.err所对应的项——比较小更好,因为说明估计值越集中
t检验值:下面方框t对应的项,这项是coef/std.err得出——绝对值越大越好,因为越大,取到这个t值就更不可能,从而原假设(系数=0)被否定,则这个变量在回归中越显著,越应该留在回归里数据分析培训
t检验P值:下面方框里p》t那个对应的——越小越好,是做双边检验,P小说明了t大,0是最好的
置信区间:下面方框里那个95%conf interval,两个值是coef加减std.err*97.5%t分布所对应的值,代表“真实的系数”有95%可能落在这个区间里(因为我们OLS假设这是一个抽样,是一个样本的估计值的系数,而还有一个真实规律所对应的系数)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13