京公网安备 11010802034615号
经营许可证编号:京B2-20210330
保险业应在大数据应用上寻求突破
以大数据和云计算为代表的新技术正在融入并深刻影响着人们的生产生活,而且已经成为当前引领金融业变革的关键因素。大数据的价值体现在应用,而目前全球不同行业对于大数据的应用并不均衡,且呈现出诸多特点。
一是知易行难,理念快于应用。大数据常识被广泛传播,数据价值深入人心,但如何具体操作实施,并未形成清晰可行的思路和模式。二是星星之火,还未形成燎原之势。当前,大数据应用的成功案例主要集中于互联网行业,金融、零售、电信、公共管理、医疗卫生等领域虽然也在积极尝试,但还没有明显成效。三是数据封闭,数据开放共享有待加强。大数据的理想目标是能够汇聚内外部数据形成综合分析的全局视野,但实际上,现有应用仍然以机构内部数据为主。由于法律和数据交易机制不健全,数据交易平台和数据源拥有者在对外开放和交易数据上仍持谨慎态度。四是创新不足,突破性创新应用尚不多见。大数据应用多集中于市场营销领域,如改善客户服务、流程优化、精准营销和削减成本等,而在新产品、新服务、新商业模式等方面的突破性创新应用不多。
从保险业与大数据的渊源来看,其发展史本就是一部数据应用沿革的历史。在大数据时代,保险业拥有的数据类型从结构化扩展到非结构化,从交易数据扩展到行为数据,从内部数据扩展到外部数据,从定量数据扩展到定性数据,每一步发展都使保险业的数据基础更加夯实。
从不同行业应用大数据的水平来看,保险业走在前列。不过,与金融同业相比,保险业应用大数据水平落后于银行、证券,后者的行业数据信息共享平台建设较早,为大数据应用奠定了基础,而保险业的行业共享平台刚起步;与国外保险机构相比,我国保险机构也稍显落后。
当前,国外保险业大数据应用具有以下特点:一是对大数据的价值创造潜力已有广泛共识,保险业对大数据应用重视程度日益加深。二是数据来源日趋多元化。除传统的业务数据、财务数据外,国外保险业正积极拓展数据来源,客服、语音、官方网站、社交媒体、地理信息、可穿戴设备以及部分行业外数据都将成为大数据背景下保险业新的数据来源。三是应用领域不断扩展。国际保险业普遍认为,大数据同保险业的结合是全方位、全流程的,要充分挖掘应用节点,更好地利用大数据技术创造价值。四是商业效果开始显现。国际保险业普遍认为大数据理念、技术和资源的有效运用,将为行业创造前所未有的商业价值。
反观我国保险业大数据应用情况,与国外相比确实存在一定差距。目前,我国保险业高度重视大数据研究应用,大部分保险机构都认为大数据将给传统金融保险业带来深刻变革,必将成为未来企业的核心竞争力。但在数据资源积累上则未显现出变革的力量。调查显示,我国保险业数据资源总量仍偏小,以结构化数据为主,非结构化数据利用率较低,数据规模、应用效率与互联网等大数据应用水平先进的行业相比还有很大差距。由于数据资源匮乏,导致我国保险业对大数据大规模商业应用尚未出现,大部分保险机构还处于学习理解阶段,仅有少数公司开始进行小规模的试验。而现有实践则主要集中在营销领域,通过对客户数据的全面搜集,多维度刻画客户特征,实现精准营销。另外,尽管保险公司承认大数据将为保险业带来深刻变革,但从实际结果来看,仅有20%左右的保险机构建立了专门的大数据研发团队,这其中,三分之二的团队人数在10人以下,且绝大部分成员来自公司信息技术部门,跨学科、跨领域的复合型大数据人才严重不足。
展望未来,保险业大数据应用最有可能在以下几个领域取得突破:一是扩大承保范围。受保险理论和承保技术局限,过去不可保的风险,在大数据时代可能成为可保风险。大数据理念和技术的深度应用,将有效激发潜在的、全新的保险需求,如已经开展的运费退货险、正在酝酿的网络空间保险、云保险等。二是实现个性定价。大数据的出现使个性化费率制定和最优产品定价有了可能。数据量越大、数据维度越广,定价的精确度就越高,保险公司面临的逆选择风险越低,费率的科学性、充足性和公平性也就越理想。三是优化核保理赔。通过运用大数据分析建模,可以有效实现自动化核保核赔。四是提升反欺诈绩效。根据大数据技术本身的特点和保险公司欺诈事件的特性,可以在核保及理赔环节应用大数据技术开展反欺诈检测。五是提高运营效率。大数据在财务管理、行政管理、人力资源管理等领域的深入应用,对于改善保险机构运营及管理水平也有积极作用。六是助力风险管控。保险业可以在声誉风险、信用风险、操作风险等领域有效运用大数据,不断提高企业风险管理能力和水平。对于保险监管而言,大数据应用能够揭示传统技术难以展现的关联关系,为有效处理复杂风险提供新手段,为保险监管的现代化转型带来新机遇。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03