
用excel完全可以代替SPSS软件
市场研究界习惯使用SPSS软件进行统计计算与分析,大家都说效果非常不错。当年刚刚创业时,我们也慕名准备使用该软件。到同行处去看了一下,不仅英文多,而且与Window不兼容(当时是这样),对于我们这些离不开微软程序的人来说,这样的学习成本太高了。后来,深入研究了一下excel程序,发现微软实在是优秀的软件公司,使用excel程序完全可以替代SPSS程序。
一、 excel中的统计函数
除了轻而易举的四则运算之外,在excel中有专门的统计函数栏目(点击插入-函数-统计),包括∶中位数(MEDIAN)、众数(MODE)、方差(DEVSQ)、标准差(STDEV)、频率(FREQUENCY)、置信区间(CONFIDENCE)、最大值(MAX)、最小值(MIN)等等,看一看帮助说明操作起来很容易。
如果一下找不到想要的函数,也不难,可以根据公式让excel计算。我不喜欢记公式,就去查一下书,然后把常用的一些统计公式做到excel某个文件中。比如,为计算应调查的样本数量,做出下表∶
1、重复抽样
概率度t
标准差σ
极限误差△
样本总数N
样本数n
B3
C3
=B3^2*C3^2/D3^2
2、不重复抽样
概率度t
标准差σ
极限误差△
样本总数N
样本数n
B5
C5
D5
E5
F5
=E5*B5^2*D5^2/(E5*D5^2+B5^2*D5^2)
等等。上表中B3、C3等符号是为了说明空格的位置才加上去了,在excel中看不到,在相应的位置输入实际的数据结果就会自动算出来。当然,用vb的frame控件来编个程序也可以,但好像太浪费大脑与电脑资源了,这样的函数已经足够解决我们的问题。其它很多统计计算用函数也可同样处理。
二、 统计数据分析
1、分析工具库加载宏
SPSS中的回归分析,在excel“工具”中也用(见本人的博客“利用excel提高工作效率”),用数组公式也可以,步骤如下∶
A. 选定数组公式输入区域
B. 输入公式
C. 按ctrl+shift+enter完成
2、聚类分析等
充分利用excel中的“筛选”、“排序”即可,在“数据”菜单中,具体操作方法请看“帮助”。在excel中做交叉分析时,可以使用“筛选”,数据的个数数字会显示在excel文件的下方。当然,如果要做大量的交叉分析,这样的办法还是很不方便的,不够自动化,很多数字要靠手工记录,这个时候,就要辛苦一些,用vb语言做一下程序了(不要怕,vb语言就是为非专业人士准备的程序语言,操作思路见本人的博客“利用excel提高工作效率”。
3、各种统计检验
在excel中,还有成对双样本均值分析、t检验:双样本等方差假设、F检验:双样本方差分析等,能够大大提高统计结论的科学性。
三、 用宏语言安排统计工作
在SPSS中,使用者没有什么自由度,完全受到人家事先编好程序的控制,遇到一些临时出现需要特别处理的问题十分被动,不妨尝试一下在Window中用vb语言编一些程序吧。我做交叉分析就用了vb语言,就是用循环句(for)而已,让统计结果自动汇总显示在数据库的某一处。当然,为了提高程序的运行速度,建议尽量利用Window本身已有的功能。比如,我会让程序先对数据库进行排序,然后利用Window已有的“筛选”功能提高计算的速度,这样,运行效率提高了很多。即使不懂这些所谓的技巧也没有关系,大不了让电脑累一些就是了,你自己可以放松一下,多一些伸懒腰的时间。
数据库的汇总统计用countif函数也可以,但太笨,如果你经常做统计工作,建议将工作“录制宏”,并进行一些改编,这样,一点击鼠标,数据的统计结果就自动出来了。这还不够,我还让excel根据统计结果自动作图,自动将统计数据库及图标拷贝到Word中(因为我们总是在Word中写分析报告)。
我们的问卷一般都录入在Word文件中,我们设置的excel数据统计程序显示的选项都是数字,没有把汉字选择项表示出来。一开始,我们都是从Word中一点一点把文字拷进excel表格中的相应位置,后来,我觉得如果已经在电脑中输入过一次,就不应该为此做第二次的手工工作,就编了一个小程序,Word中的汉字就可以直接自动拷贝到excel中来了,省了很多手工劳动。
四、 其它,象制图之类的工作,excel也相当出色,没有必要劳驾SPSS。
总之,Office实在是太强了,在电脑办公方面有绝对的垄断性,好好用它,就可以不理睬许多其它的电脑软件,大大提高我们的工作效率,降低自己的学习与时间成本。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18