京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据能干啥
这两年大数据这个词特别火,传统企业IT部门都纷纷在探索上线大数据。当然,过去的十年,传统企业IT部门也都纷纷上线了商业智能。
很多处于云里雾里的传统企业IT人员,心中第一个困惑就是:大数据和商业智能有啥本质区别。
一、大数据和商业智能有啥本质区别
我先抛开数据、抛开业务应用,就说大数据技术平台和商业智能技术平台的本质区别,那就是技术架构的升级。如果你发现你运行一个报表需要3-5天,而且不管升级单台服务器硬件,还是扩展服务器集群,性能提升并不明显,那说明,技术架构不能支撑现有需求了,需要升级技术架构了。那说明你需要考虑上马大数据技术平台了。

二、大数据为啥这几年火了
大数据为啥这几年火了,有两方面驱动,一方面是数据量,一方面是数据类型。
从数据量来说,因为移动手机人手一部随时随地产生信息,智能设备&物联网、产业链打通、互联网社区、电子商务这些新技术新应用的产生,导致数据量激增。如果企业没有搞这些新技术新应用,那数据量只是随企业业务规模增大而增大。
从数据类型来说,过去企业一般只关注应用系统产生的关系型数据,或者是EXCEL产生的结构性数据。但是随着智能硬件、互联网社区的产生,非结构性信息更多,如照片、视频、音频、日志、聊天记录、地理信息...。过去我们不关注这些信息,但是随着我们应用的需求,如生物识别、声音识别、图像识别、视频识别、用户地理周边价值挖掘、社交信息价值挖掘,我们需要收集这些信息,也需要分析这些信息。而过去专注结构性数据的商业智能技术平台显然就不适合来高性能处理这些非结构化信息。如果企业没有收集和处理这些非结构化信息的需求,当然也不存在真正的大数据技术平台购买需求。
三、大数据能干啥
大数据技术平台这几年发展飞速,从Hadoop的海量批处理作业,Spark又往前走了一步可以更多的利用内存来计算,而Storm更进一步可以数据边导过来边处理。这就让大数据的计算性能、处理性能高很多,不需要我们再等待几天来看结果了。这样就能满足咱们实时的应用需求,比如说搜索关联推荐想通过用户上下文的点击大数据来实时推荐,过去无法满足,现在可以了。这比过去商业智能OLAP离线数据处理要高很多。
但是,大数据应用技术这么多年并无长足进步。我们的大数据技术平台只是让更大量的数据可以高性能的存储和计算了,但如何高价值利用数据,我们目前的应用技术还不支撑。
大数据利用,目前还主要停留在报表查询与统计,只不过这么多数据、这么不同类型的数据,处理性能更高。但是要注意,需要你自己对业务很精通很洞察,你才能设计出有高价值含量的报表,大数据技术平台只是把数据给你按你的要求输出出来,还得你自己分析数据到底有啥价值。所以说啊,你现在购买一套大数据平台,你最后干的事还是做报表、分析报表。
再往前走一步,现在利用最多的就是搜索关联推荐,这就有点人工智能的意味了,至少相关性算法是要利用上了。如果你没啥需要关联性信息展示的,那有这个功能你也是白浪费。
现在大数据应用技术热点,今年都扎在了深度学习方面,主要在分类、聚类、回归这些算法上。这些算法在商业智能时代就有了,但是没有360度海量数据来训练算法、调整参数,算法的演进在过去并不快。现在有了移动&智能硬件&物联网、产业链信息打通、互联网社区和电子商务,360度的海量数据有了,数据丰富了,算法训练就进化快多了。而且现在分布式存储和计算中间件平台的兴起,为海量数据的高速存储和计算提供了很好的基础支撑,可以高性能运行起来了,所以近几年在深度学习的精准度方面进展不错。
大数据应用技术,目前在世界最前沿搞的是模式识别,就是没有模式,机器从从海量数据中24小时不停歇计算,根据初始算法模型不断进行数据训练,自动调节参数,再继续往前演进,这样慢慢会自己形成最佳模式甚至会衍生出变异模式。这就真正智能化了。可惜,这种机器学习模式识别,目前还无法普及性商用,只能在某些特定领域特定训练。
四、传统企业是否要购买大数据平台
如果你满意现在的商业智能处理性能、成本,那么你不需要上马大数据平台。因为那表示你的数据量并不大,现有商业智能技术平台能够支撑。
如果你过去就没做过商业智能项目,那么现在上马大数据平台,我个人觉得无所谓,可以上可以不上,但即使是上,过去搞商业智能的步骤,该弄的还得弄,一步也少不了。而且你仍然别指望数据输出、知识黄金输出。别做春秋大梦,该设计业务报表、该分析解读业务报表,还得搞。大数据技术平台只是让更多的数据可以高性能存储和计算而已。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06