
Python 模块_python 模块安装_python 模块下载_python学习
模块让你能够有逻辑地组织你的Python代码段。
把相关的代码分配到一个 模块里能让你的代码更好用,更易懂。
模块也是Python对象,具有随机的名字属性用来绑定或引用。
简单地说,模块就是一个保存了Python代码的文件。模块能定义函数,类和变量。模块里也能包含可执行的代码。
例子
一个叫做aname的模块里的Python代码一般都能在一个叫aname.py的文件中找到。下例是个简单的模块support.py。
defprint_func(par):print"Hello : ",parreturn
想使用Python源文件,只需在另一个源文件里执行import语句,语法如下:
importmodule1[,module2[,...moduleN]
当解释器遇到import语句,如果模块在当前的搜索路径就会被导入。
搜索路径是一个解释器会先进行搜索的所有目录的列表。如想要导入模块hello.py,需要把命令放在脚本的顶端:
#!/usr/bin/python# -*- coding: UTF-8 -*-# 导入模块importsupport# 现在可以调用模块里包含的函数了support.print_func("Zara")
以上实例输出结果:
Hello:Zara
一个模块只会被导入一次,不管你执行了多少次import。这样可以防止导入模块被一遍又一遍地执行。
Python的from语句让你从模块中导入一个指定的部分到当前命名空间中。语法如下:
frommodnameimportname1[,name2[,...nameN]]
例如,要导入模块fib的fibonacci函数,使用如下语句:
fromfibimportfibonacci
这个声明不会把整个fib模块导入到当前的命名空间中,它只会将fib里的fibonacci单个引入到执行这个声明的模块的全局符号表。
把一个模块的所有内容全都导入到当前的命名空间也是可行的,只需使用如下声明:
frommodnameimport*
这提供了一个简单的方法来导入一个模块中的所有项目。然而这种声明不该被过多地使用。
当你导入一个模块,Python解析器对模块位置的搜索顺序是:
当前目录
如果不在当前目录,Python 则搜索在 shell 变量 PYTHONPATH 下的每个目录。
如果都找不到,Python会察看默认路径。UNIX下,默认路径一般为/usr/local/lib/python/。
模块搜索路径存储在system模块的sys.path变量中。变量里包含当前目录,PYTHONPATH和由安装过程决定的默认目录。
作为环境变量,PYTHONPATH由装在一个列表里的许多目录组成。PYTHONPATH的语法和shell变量PATH的一样。
在Windows系统,典型的PYTHONPATH如下:
setPYTHONPATH=c:\python20\lib;
在UNIX系统,典型的PYTHONPATH如下:
setPYTHONPATH=/usr/local/lib/python
变量是拥有匹配对象的名字(标识符)。命名空间是一个包含了变量名称们(键)和它们各自相应的对象们(值)的字典。
一个Python表达式可以访问局部命名空间和全局命名空间里的变量。如果一个局部变量和一个全局变量重名,则局部变量会覆盖全局变量。
每个函数都有自己的命名空间。类的方法的作用域规则和通常函数的一样。
Python会智能地猜测一个变量是局部的还是全局的,它假设任何在函数内赋值的变量都是局部的。
因此,如果要给全局变量在一个函数里赋值,必须使用global语句。
global VarName的表达式会告诉Python, VarName是一个全局变量,这样Python就不会在局部命名空间里寻找这个变量了。
例如,我们在全局命名空间里定义一个变量money。我们再在函数内给变量money赋值,然后Python会假定money是一个局部变量。然而,我们并没有在访问前声明一个局部变量money,结果就是会出现一个UnboundLocalError的错误。取消global语句的注释就能解决这个问题。
#!/usr/bin/python# -*- coding: UTF-8 -*-Money=2000defAddMoney():# 想改正代码就取消以下注释:# global MoneyMoney=Money+1printMoneyAddMoney()printMoney
dir()函数一个排好序的字符串列表,内容是一个模块里定义过的名字。
返回的列表容纳了在一个模块里定义的所有模块,变量和函数。如下一个简单的实例:
#!/usr/bin/python# -*- coding: UTF-8 -*-# 导入内置math模块importmath content=dir(math)printcontent;
以上实例输出结果:
['__doc__','__file__','__name__','acos','asin','atan','atan2','ceil','cos','cosh','degrees','e','exp','fabs','floor','fmod','frexp','hypot','ldexp','log','log10','modf','pi','pow','radians','sin','sinh','sqrt','tan','tanh']
在这里,特殊字符串变量__name__指向模块的名字,__file__指向该模块的导入文件名。
根据调用地方的不同,globals()和locals()函数可被用来返回全局和局部命名空间里的名字。
如果在函数内部调用locals(),返回的是所有能在该函数里访问的命名。
如果在函数内部调用globals(),返回的是所有在该函数里能访问的全局名字。
两个函数的返回类型都是字典。所以名字们能用keys()函数摘取。
当一个模块被导入到一个脚本,模块顶层部分的代码只会被执行一次。
因此,如果你想重新执行模块里顶层部分的代码,可以用reload()函数。该函数会重新导入之前导入过的模块。语法如下:
reload(module_name)
在这里,module_name要直接放模块的名字,而不是一个字符串形式。比如想重载hello模块,如下:
reload(hello)
包是一个分层次的文件目录结构,它定义了一个由模块及子包,和子包下的子包等组成的Python的应用环境。
考虑一个在Phone目录下的pots.py文件。这个文件有如下源代码:
#!/usr/bin/python# -*- coding: UTF-8 -*-defPots():print"I'm Pots Phone"
同样地,我们有另外两个保存了不同函数的文件:
Phone/Isdn.py 含有函数Isdn()
Phone/G3.py 含有函数G3()
现在,在Phone目录下创建file __init__.py:
Phone/__init__.py
当你导入Phone时,为了能够使用所有函数,你需要在__init__.py里使用显式的导入语句,如下:
fromPotsimportPotsfromIsdnimportIsdnfromG3importG3
当你把这些代码添加到__init__.py之后,导入Phone包的时候这些类就全都是可用的了。
#!/usr/bin/python# -*- coding: UTF-8 -*-# 导入 Phone 包importPhonePhone.Pots()Phone.Isdn()Phone.G3()
以上实例输出结果:
I'm Pots Phone I'm3GPhoneI'm ISDN Phone
如上,为了举例,我们只在每个文件里放置了一个函数,但其实你可以放置许多函数。你也可以在这些文件里定义Python的类,然后为这些类建一个包。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26