
Python入门教程 超详细1小时学会Python
本文适合有经验的程序员尽快进入Python世界.特别地,如果你掌握Java和Javascript,不用1小时你就可以用Python快速流畅地写有用的Python程序.
为什么使用Python
假设我们有这么一项任务:简单测试局域网中的电脑是否连通.这些电脑的ip范围从192.168.0.101到192.168.0.200.
思路:用shell编程.(Linux通常是bash而Windows是批处理脚本).例如,在Windows上用ping ip 的命令依次测试各个机器并得到控制台输出.由于ping通的时候控制台文本通常是”Reply from … ” 而不通的时候文本是”time out … ” ,所以,在结果中进行字符串查找,即可知道该机器是否连通.
实现:Java代码如下:
这段代码运行得很好,问题是为了运行这段代码,你还需要做一些额外的工作.这些额外的工作包括:
编写一个类文件
编写一个main方法
将之编译成字节代码
由于字节代码不能直接运行,你需要再写个小小的bat或者bash脚本来运行.
当然,用C/C++同样能完成这项工作.但C/C++不是跨平台语言.在这个足够简单的例子中也许看不出C/C++和Java实现的区别,但在一些更为复杂的场景,比如要将连通与否的信息记录到网络数据库.由于Linux和Windows的网络接口实现方式不同,你不得不写两个函数的版本.用Java就没有这样的顾虑.
同样的工作用Python实现如下:
p.stdin.close()
p.wait()
print “execution result: %s”%p.stdout.read()
对比Java,Python的实现更为简洁,你编写的时间更快.你不需要写main函数,并且这个程序保存之后可以直接运行.另外,和Java一样,Python也是跨平台的.
有经验的C/Java程序员可能会争论说用C/Java写会比Python写得快.这个观点见仁见智.我的想法是当你同时掌握Java和Python之后,你会发现用Python写这类程序的速度会比Java快上许多.例如操作本地文件时你仅需要一行代码而不需要Java的许多流包装类.各种语言有其天然的适合的应用范围.用Python处理一些简短程序类似与操作系统的交互编程工作最省时省力.
足够简单的任务,例如一些shell编程.如果你喜欢用Python设计大型商业网站或者设计复杂的游戏,悉听尊便.
2 快速入门
安装完Python之后(我本机的版本是2.5.4),打开IDLE(Python GUI) , 该程序是Python语言解释器,你写的语句能够立即运行.我们写下一句著名的程序语句:
并按回车.你就能看到这句被K&R引入到程序世界的名言.
在解释器中选择”File”–“New Window” 或快捷键 Ctrl+N , 打开一个新的编辑器.写下如下语句:
保存为a.py文件.按F5,你就可以看到程序的运行结果了.这是Python的第二种运行方式.
找到你保存的a.py文件,双击.也可以看到程序结果.Python的程序能够直接运行,对比Java,这是一个优势.
我们换一种方式来问候世界.新建一个编辑器并写如下代码:
在你保存代码的时候,Python会提示你是否改变文件的字符集,结果如下:
# -*- coding: cp936 -*-
print “欢迎来到奥运中国!”
raw_input(“Press enter key to close this window”);
将该字符集改为我们更熟悉的形式:
# -*- coding: GBK -*-
print “欢迎来到奥运中国!” # 使用中文的例子
raw_input(“Press enter key to close this window”);
程序一样运行良好.
用微软附带的计算器来计数实在太麻烦了.打开Python解释器,直接进行计算:
可以如下打印出预定义输出格式的字符串:
字符串是怎么访问的?请看这个例子:
请注意ASCII和UNICODE字符串的区别:
类似Java里的List,这是一种方便易用的数据类型:
# Loops List
a = [‘cat’, ‘window’, ‘defenestrate’]
for x in a:
print x, len(x)
并且,介绍一个方便好用的函数:
for line in f:
print line
f.close()
每一个.py文件称为一个module,module之间可以互相导入.请参看以下例子:
module可以定义在包里面.Python定义包的方式稍微有点古怪,假设我们有一个parent文件夹,该文件夹有一个child子文件夹.child中有一个module a.py . 如何让Python知道这个文件层次结构?很简单,每个目录都放一个名为_init_.py 的文件.该文件内容可以为空.这个层次结构如下所示:
那么Python如何找到我们定义的module?在标准包sys中,path属性记录了Python的包路径.你可以将之打印出来:
import sys
print sys.path
通常我们可以将module的包路径放到环境变量PYTHONPATH中,该环境变量会自动添加到sys.path属性.另一种方便的方法是编程中直接指定我们的module路径到sys.path 中:
print “Import add_func from module a”
print “Result of 1 plus 2 is: ”
print add_func(1,2)
总结
你会发现这个教程相当的简单.许多Python特性在代码中以隐含方式提出,这些特性包括:Python不需要显式声明数据类型,关键字说明,字符串函数的解释等等.我认为一个熟练的程序员应该对这些概念相当了解,这样在你挤出宝贵的一小时阅读这篇短短的教程之后,你能够通过已有知识的迁移类比尽快熟悉Python,然后尽快能用它开始编程.
当然,1小时学会Python颇有哗众取宠之嫌.确切的说,编程语言包括语法和标准库.语法相当于武术招式,而标准库应用实践经验则类似于内功,需要长期锻炼.Python学习了Java的长处,提供了大量极方便易用的标准库供程序员”拿来主义”.(这也是Python成功的原因),在开篇我们看到了Python如何调用Windows cmd的例子,以后我会尽量写上各标准库的用法和一些应用技巧,让大家真正掌握Python.
但不管怎样,至少你现在会用Python代替繁琐的批处理写程序了.希望那些真的能在一小时内读完本文并开始使用Python的程序员会喜欢这篇小文章,谢谢!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18