
Python入门教程 超详细1小时学会Python
本文适合有经验的程序员尽快进入Python世界.特别地,如果你掌握Java和Javascript,不用1小时你就可以用Python快速流畅地写有用的Python程序.
为什么使用Python
假设我们有这么一项任务:简单测试局域网中的电脑是否连通.这些电脑的ip范围从192.168.0.101到192.168.0.200.
思路:用shell编程.(Linux通常是bash而Windows是批处理脚本).例如,在Windows上用ping ip 的命令依次测试各个机器并得到控制台输出.由于ping通的时候控制台文本通常是”Reply from … ” 而不通的时候文本是”time out … ” ,所以,在结果中进行字符串查找,即可知道该机器是否连通.
实现:Java代码如下:
这段代码运行得很好,问题是为了运行这段代码,你还需要做一些额外的工作.这些额外的工作包括:
编写一个类文件
编写一个main方法
将之编译成字节代码
由于字节代码不能直接运行,你需要再写个小小的bat或者bash脚本来运行.
当然,用C/C++同样能完成这项工作.但C/C++不是跨平台语言.在这个足够简单的例子中也许看不出C/C++和Java实现的区别,但在一些更为复杂的场景,比如要将连通与否的信息记录到网络数据库.由于Linux和Windows的网络接口实现方式不同,你不得不写两个函数的版本.用Java就没有这样的顾虑.
同样的工作用Python实现如下:
p.stdin.close()
p.wait()
print “execution result: %s”%p.stdout.read()
对比Java,Python的实现更为简洁,你编写的时间更快.你不需要写main函数,并且这个程序保存之后可以直接运行.另外,和Java一样,Python也是跨平台的.
有经验的C/Java程序员可能会争论说用C/Java写会比Python写得快.这个观点见仁见智.我的想法是当你同时掌握Java和Python之后,你会发现用Python写这类程序的速度会比Java快上许多.例如操作本地文件时你仅需要一行代码而不需要Java的许多流包装类.各种语言有其天然的适合的应用范围.用Python处理一些简短程序类似与操作系统的交互编程工作最省时省力.
足够简单的任务,例如一些shell编程.如果你喜欢用Python设计大型商业网站或者设计复杂的游戏,悉听尊便.
2 快速入门
安装完Python之后(我本机的版本是2.5.4),打开IDLE(Python GUI) , 该程序是Python语言解释器,你写的语句能够立即运行.我们写下一句著名的程序语句:
并按回车.你就能看到这句被K&R引入到程序世界的名言.
在解释器中选择”File”–“New Window” 或快捷键 Ctrl+N , 打开一个新的编辑器.写下如下语句:
保存为a.py文件.按F5,你就可以看到程序的运行结果了.这是Python的第二种运行方式.
找到你保存的a.py文件,双击.也可以看到程序结果.Python的程序能够直接运行,对比Java,这是一个优势.
我们换一种方式来问候世界.新建一个编辑器并写如下代码:
在你保存代码的时候,Python会提示你是否改变文件的字符集,结果如下:
# -*- coding: cp936 -*-
print “欢迎来到奥运中国!”
raw_input(“Press enter key to close this window”);
将该字符集改为我们更熟悉的形式:
# -*- coding: GBK -*-
print “欢迎来到奥运中国!” # 使用中文的例子
raw_input(“Press enter key to close this window”);
程序一样运行良好.
用微软附带的计算器来计数实在太麻烦了.打开Python解释器,直接进行计算:
可以如下打印出预定义输出格式的字符串:
字符串是怎么访问的?请看这个例子:
请注意ASCII和UNICODE字符串的区别:
类似Java里的List,这是一种方便易用的数据类型:
# Loops List
a = [‘cat’, ‘window’, ‘defenestrate’]
for x in a:
print x, len(x)
并且,介绍一个方便好用的函数:
for line in f:
print line
f.close()
每一个.py文件称为一个module,module之间可以互相导入.请参看以下例子:
module可以定义在包里面.Python定义包的方式稍微有点古怪,假设我们有一个parent文件夹,该文件夹有一个child子文件夹.child中有一个module a.py . 如何让Python知道这个文件层次结构?很简单,每个目录都放一个名为_init_.py 的文件.该文件内容可以为空.这个层次结构如下所示:
那么Python如何找到我们定义的module?在标准包sys中,path属性记录了Python的包路径.你可以将之打印出来:
import sys
print sys.path
通常我们可以将module的包路径放到环境变量PYTHONPATH中,该环境变量会自动添加到sys.path属性.另一种方便的方法是编程中直接指定我们的module路径到sys.path 中:
print “Import add_func from module a”
print “Result of 1 plus 2 is: ”
print add_func(1,2)
总结
你会发现这个教程相当的简单.许多Python特性在代码中以隐含方式提出,这些特性包括:Python不需要显式声明数据类型,关键字说明,字符串函数的解释等等.我认为一个熟练的程序员应该对这些概念相当了解,这样在你挤出宝贵的一小时阅读这篇短短的教程之后,你能够通过已有知识的迁移类比尽快熟悉Python,然后尽快能用它开始编程.
当然,1小时学会Python颇有哗众取宠之嫌.确切的说,编程语言包括语法和标准库.语法相当于武术招式,而标准库应用实践经验则类似于内功,需要长期锻炼.Python学习了Java的长处,提供了大量极方便易用的标准库供程序员”拿来主义”.(这也是Python成功的原因),在开篇我们看到了Python如何调用Windows cmd的例子,以后我会尽量写上各标准库的用法和一些应用技巧,让大家真正掌握Python.
但不管怎样,至少你现在会用Python代替繁琐的批处理写程序了.希望那些真的能在一小时内读完本文并开始使用Python的程序员会喜欢这篇小文章,谢谢!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26