京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析智能制造业
今年五月国务院正式印发了《中国制造2025》,部署全面推进实施制造强国战略,旨在通过重点推进创新驱动、智能转型、强化基础、绿色发展,推动中国从制造业大国跻身世界制造强国之列。
然而,不论是中国制造2025,还是所谓的工业4.0,概念阐述虽有所不同,但其本质趋于同归,制造业是中国经济不断增长的强心剂,“互联网+”的深入推进,同时与制造业深入融合,早就更加智能的制造,势必会引发一场全新的工业革命。
制造业大数据浪潮
正如麦肯锡所述“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。”对于制造业而言,数据一直被奉为生命之血。如果说制造业信息化的最初阶段是企业资源计划(ERP)、产品生命周期管理(PLM)等应用系统实施的话,那么接下来对数据的掌控将成为未来发展的重点。
对于中国的制造型企业来说,最初是从粗放式的管理向精细化转型;然而市场竞争非常严苛,制造业需要在这样的环境下不断优化生产工艺、加速业务流程,实现更加科学的决策分析。通过驾驭大数据无疑会让制造企业变得更智慧,在竞争日益激烈的市场中就会获得更高的竞争力。
新层次的大数据分析为制造业研究市场和趋势分析带来新的维度。这些数据被用于预测未来、规避风险、理解价值链并优化客户体验的重要工具,为制造业未来业务的增长指明方向。
此外,越来越多复杂查询的处理带来了各种不同的数据集,其中有可能包含来自企业资源计划(ERP)系统和客户关系管理(CRM)系统交易数据、社交媒介和地理空间数据,还有内部文档和其它格式信息等等。
现在企业存储的信息量即便不是PB级,起码也有TB量级。这些企业可能希望每天能分析几次关键数据,甚至是实现实时分析;而传统BI流程对历史数据进行分析的频率是以周或月为单位的。
摆脱制造业困境
实际上,企业如果要进行大数据分析实践,选择合适的技术是规划的第一部分,企业选择了数据库软件、分析工具以及相关的技术架构后,才可以进行下一步并开发一个真正成功的大数据平台。
数据收集仅仅是个开始,这些数据必须能够转化为实际的行动,从而指导企业运营。要实现这一点就必须注意数据的细节,正确理解数据的相关性。比如,企业所拥有的各种数据源需要与数据关联性和业务规则复杂度进行链接,以获得一个包含企业绩效、销售机会、客户行为、风险因素和其它业务指标的全面视图。由于对于数据分析的需要,历史数据的数量也需考虑在内。
如果企业需要五年的数据,而一个数据源只包含两年的信息,那么该怎么办呢?这些因素并不能从根本上影响需求的规划,但是它们可以帮助企业部署大数据分析系统、选择最为合适的技术。
对于垂直市场而言,现成的分析应用程序都是专门为其定制的,当公司管理人员和业务经理需要查看大数据分析查询结果时,数据可视化工具可以简化其流程。
企业在在制定实施方案、对大数据分析解决方案进行选型之前,还需要考虑一些问题。智能化的大数据分析解决方案可为企业提供精准的趋势预测。一方面可以深刻理解市场需求和用户的痛点,从而做到真正的产品创新;另一方面对库存、物料、人员等资源进行更优化的计划和协调。
大数据正在以稳定的步伐渗透到各行各业,未来我们的生活中大数据的应用会越来越多,而对于制造业而言,需要化被动为主动,因为信息质量会变得更好,而且信息能够更高效的得到利用,从而充分享受到大数据分析所带来的红利。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12