
大数据时代 你的生活被“格式化”了没
随着互联网和智能手机越来越发达,我们的生活逐渐进入了一个大数据时代。任何事情都要求精确到用数据来说话,比如现在流行的微信运动,将人们每天的运动量用一些数据来展现,并用排行榜的方式来和好友PK,同时还会给人们提供一个运动参考。这些数据逐渐成为左右人们生活方式的一个因素。有多少人没有被这些数据所束缚?又有多少人的生活方式没有因此而改变呢?
当运动和吃饭都变成卡路里
随着移动互联网的飞速发展,各种各样的APP层出不穷,它们从不同角度影响着人们的生活。
以微信运动来说,现在流行的一些计步软件在使用前,会要求用户输入性别、年龄、身高、体重,然后进行分析得出结论,告诉用户每天需要消耗多少大卡的热量,走多少公里,需要多长时间等等。这样一来,以前人们那种为了增强心肺功能或者锻炼身体的灵活性和力量而运动的想法便少了很多,大部分人的运动目的不再单纯了,而是为了达到这些数据标准。他们认为,这些数据是科学的,只要严格按照这些数据来进行锻炼,一定会达到健身的目的。慢慢地,人们就会形成一种习惯,一种设定健身目标的习惯,然后通过这些数据来观察自己的身体状态。
而在一些减肥类APP中,除了将运动数据化以外,还会对食物的摄取量进行数据分析。当你输入早、中、晚三餐的种类和数量后,系统会分析出你所摄入的热量有多少大卡,超出多少或者还可摄入多少,并根据你的身高、体重等资料给出一份健康报告。
或许有人会提出质疑,如果每天都要和枯燥的数据来打交道,那么生活还有什么快乐可言?但是这并不代表没有人喜欢。
数据改变了人们的生活方式
“步数2117,距离1.6公里,相当于65节火车车厢连起来的长度。消耗热量94千卡,活跃时间为17分钟。”早上从家到单位后,太原市民王先生打开了自己的计步软件,上面将他的运动量归结成为了一个个精准的数字。“自从有了‘微信运动’以后,我就喜欢上了这种运动方式,清晰的运动数据,让我的锻炼目的更加明确了。我的目标其实很简单,不要求每天都是第一,但必须达到一万步,只有这样我才会觉得有效果。”王先生表示。为此,他给自己制定了每日运动计划,每天上下班都走路回家,中午再出去遛个弯。这样,基本上一天下来就达到既定目标了。“有时候临睡前走了九千多步,还差一点,我就去爬楼梯,来回几趟就够了。”
还有一些人会刻意地将自己的饮食和运动控制得精准些,比如想要减肥的人。“要想变苗条,每天摄入的卡路里一定要少于你所燃烧的卡路里。”这是孙芳芳经常挂在嘴边的一句话。她是来自省城某高校大二的一名学生。为了减肥,她平时吃饭和运动都特别注意。每天都要做好饮食计划,每顿饭吃什么,吃多少,会摄入多少卡路里,都要经过精准的计算。“用软件来记录的话比较方便,只要选择吃的东西和数量就可以了,系统会自动给出卡路里。比如100克米饭116大卡,100克鸡蛋144大卡,100克酸奶72大卡,100克苹果52大卡……”孙芳芳说道,“然后再利用运动软件,将步数转换成消耗的卡路里,再换算成摄入的食物卡路里。我认为摄入的卡路里一定要少于所消耗的卡路里。”
将饮食和运动进行量化,对于一些健康控或者想减肥的人来说,的确是一个很不错的选择。因为在他们看来,这一点非常重要,这决定了他们的饮食是否健康,运动是否达标。
运动不能简单看数据
如果严格按照运动软件所提供的参考值完成任务,就能达到健身锻炼的目的吗?山西大学体育学院的老师刘宏强告诉记者,从科学性来讲,通过这样的方式来运动还是可行的,至于运动效果,那就得因人而异了。“因为健身的人群里,每个人的出发点不一样,要达到的目的和要求也不一样。对于真正从事运动的运动型人群来说,他们的目的是要健康健身。那么如果每天仅靠走路来锻炼,运动量就太小了。而对于想要达到健康减肥的人群来说,这样做还是有效果的。不过前提是要有一定的距离、量,并达到一定的强度才可以。如果慢慢悠悠的散步,即便走上一个小时,也没有健身效果。”
而像孙芳芳那种认为“食物摄入量低于运动消耗量就可以达到减肥瘦身目的”的说法,刘宏强认为其很笼统,不太科学,“运动消耗量不一定能和食物摄取量等同,比如经常游泳的人,消耗热量是1000大卡,需要补充的热量是1500大卡甚至更多,但是他的体型仍然很苗条。因为他在水中,要对抗水的阻力等各个方面的因素。所以那种说法不一定很精准。”
最后,刘宏强还给喜欢运动的朋友提出了一个建议,那就是运动的时间段一定要合理。不管是慢跑也好,走路也好,一般都不提倡太早或者太晚,真正健身还是在阳光下进行比较好。首先从大气指数、污染程度来说,白天空气质量适合运动。再者从周易八卦来说,白天为阳,晚上为阴。太阳出来以后采集阳气,对人身体比较好。如果在黑暗的地方健身,人们容易产生一种恐慌、恐惧的感觉。“我认为不要晚上运动,尤其是现在夜跑的人那么多,但是效果却很一般。因为睡前身体机能各方面都不太好,运动的量和强度很难控制,有时候量大了就会影响睡眠,量少了又达不到真正锻炼效果。而且还容易出交通事故,有一定的安全隐患。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18