京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析时代:大数据环境下的商业竞争
大数据的潜力在不断增长。充分利用这项优势意味着公司将他们的战略视角与大数据结合分析,做出更好的、更快的决策。
大数据只是炒作么?恰恰相反:早期的研究可能只对最终结果产生了部分影响。麦肯锡全球研究所(McKinsey Global Institute,以下简称MGI)的新报告,‘数据分析的时代:大数据环境下的商业竞争,表明大数据的应用范围和机遇仍在扩展。鉴于科技的飞速发展,许多公司当前需要面对如何将大数据整合到他们的运营与战略中——在大数据分析可能颠覆整个行业的环境找准自己的定位。
MGI的一份报告早在2011年就指出大数据将大有作为,五年后的今天,我们仍然认为大数据的潜力还有很大。事实上,技术融合的趋势正在加速。信息流正以每三年翻一倍的速度流入数据平台、无线传感器、虚拟现实应用,以及无数的智能手机中。数据存储容量增加了,而成本则大幅下降。数据科学家们现在拥有了前所未有的计算能力,并致力开发更为复杂的算法。
早期,我们预计大数据和数据分析的潜在市场价值主要存在于五个领域。回顾过去,下图证明了各领域的发展是不均衡的,而且仍存在进一步发展的空间(图表1)。最大的发展在于位置定位服务以及美国零售业,这两个领域的竞争对手都是数字原生代。
相比之下,制造业、欧盟公共部门和美国医疗健康领域利用的潜力价值不到五年前文章预估价值的30%。此外,自2011年新机遇出现以来,领导企业和落后者之间的差距更大了。(图表1)
大数据和数据分析价值获取进度不均衡。
%表示已获取的价值 右侧表示面临的主要障碍。
大公司通过使用它们的能力,不仅提高了核心业务运作效率,而且推出了新的商业模式。数字平台的网络效应在某些市场形成了赢家通吃的局面。那些领先的公司已经拥有了资深的分析人才来处理各种问题,并且他们正在积极寻找进入其他行业的途径。这些公司可以利用他们的体量和数据深度来增加新业务,这些扩张正在逐步侵蚀传统行业分隔的界限[4]。
当数字原生代公司基于数据分析建立系统,老牌公司需要通过巨大努力改革或改造现有系统适应数据驱动决策的时代并不容易。一些公司在技术领域投入巨资,但他们尚未改变自身的组织结构使这些投资发挥效用。许多公司正在努力发掘人才,升级业务模式以及调整组织结构来获取数据分析的成果。
首先需要将数据和分析纳入公司的核心策略愿景[5] ( core strategic vision )。其次是开发合适的业务流程并构建功能,包括数据基础设施和相应的人才储备。这并不是简单地将强大的技术系统叠加在现有的业务流程之上。这些转换需要结合各个方面来实现数据和分析的全部潜力。老公司在改造时面临的种种挑战正是MGI2011年报告中提到的愿景并未实现的原因。
现有企业的改造迫在眉睫,因为先驱企业已经占据了绝对优势,犹豫不决只会让改革难上加难。由于多方面的原因,改革现在已经面临阻力。引入新的类型的数据集(“正交数据”)可以带来一些竞争优势;例如,大规模数据集成能够突破组织结构的束缚,使新视角和模型应用成为可能。
超大型数字平台[6]可以实时匹配买家和卖家,提高市场转化率。精细数据可用于产品和服务的个性化定制,其中也包括了医疗保健这个特殊领域。新分析技术可以促进新的发现与创新。最重要的是,企业不再需要依赖直觉,他们可以使用数据和分析快速决策,并通过大量的实证实现更精准的预测。
下一代的工具可能会引发更大的变化。新的机器学习和深度学习技术可以延伸出巨大的可能,在许多领域产生经济效益。系统通过机器学习可以提供客户服务,物流管理,分析医疗记录,甚至撰写新闻报道。
这些技术可以提高生产力并改善生活质量,但同时也可能导致失业和混乱。MGI先前的研究发现,当前45%的人力劳动可以被机器人技术替代[7];其中80%是通过机器学习实现的。自然语言处理的突破性成果可以进一步扩大这一影响。
大数据和数据分析已经使多个行业动摇,并且随着数据分析的应用达到临界质量—机器将获得前所未有的能力来解决问题和理解语言,这些影响将变得更加明显。能够有效利用这些能力的企业将能够创造巨大的价值和差异化,而其余企业则将发现自己越来越处于劣势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30