
大数据的未来掌控于数据集成
大数据,即用于数据分析帮助商业等方面决策的大数据集,已经发展成熟,然而它的发展速度却丝毫没有减慢的迹象。虽然大数据能够让你在问题变得不可收拾之前,帮助你发现痛点、解决问题并增进对客户的了解,但是与此同时,大数据本身也带来了一些问题和挑战。
大数据为企业和机构在商业分析,市场营销,商业决策等方面提供了优质信息,帮助企业抢在客户之前,发现问题和痛点,及时改正。但是,随着从客户,生产销售流程和员工反馈等方面收集的数据越来越多,很多企业面临着一个问题,那就是如何更快更方便地检索和分析他们收集来的数据。
那么,企业怎么才能解决这个问题呢? 答案就是“大数据架构”。“大数据架构”可以展示企业在数据存储,快速数据分析和流式数据上的根本变化,使企业能够更容易,更快速,更简单地检索可操作的信息,并提高客户数据价值。
数据如何构成挑战?
在了解大数据架构,找出人们在看待、存储、处理和分析数据的方式变化之前,我们必须先了解大数据增长所带来的最常见的问题和挑战。
到目前为止,大数据解决和部署方案几乎都是专门用于解决非常具体化的问题,满足个性化需求。它们有效地存在于各自的“孤岛”(silo)中,且互不相容。这种大数据部署案例有很多,其中用于分析客户信息、地理位置数据和智能计量传感器数据的网络点击流数据就是一个例子。
整合独立数据部署,发掘最优商业决策
大数据在持续不断增长,但是这些大数据部署的扩展性却非常有限。如果企业继续使用这些“孤岛”解决方案,他们将不得不继续购买更多的工具,软件,硬件和云存储空间,来为这么多个性化部署提供大量的储存空间。
包含大数据架构概念的大数据“整合”,已经成为大数据解决方案中最优先考虑的方法。大数据集成并不是处理具体的、个性化的问题,而是帮助我们更加全面和可靠地了解客户需求,掌握客户与品牌互动的整个过程,并评估客户与公司合作时的整体体验。
如果没有大数据架构带来的改变,大量宝贵的时间就会在各个环节中白白流失,如数据摄取,整合,安全措施,存储等。而有了大数据架构,这些环节都可以省去,因为您的数据分析解决方案不再由这么多随机的个性化工具和部署组成。
世界各地的精明企业家都已经开始整合各自的大数据源。这种大数据整合可以让他们更好地关注最重要的问题,这些痛点如果不及时解决,很可能会影响公司的产品或服务销售,损害其客户体验。大数据整合将大数据源、自动化数据摄取和安全数据更加高效地联接起来,公司数据分析将步入一个新的更为高效的阶段,公司的大数据模型也将面向未来,升级换代。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18