
看看这些制造企业要如何正确看待大数据
互联网发展到今天,大数据、云计算成为热词,但是究竟什么是大数据,和数据有什么区别,却鲜少有人了解。在制造业转型之时,大数据又是如何发挥它强大的作用,今天我们就来说说大数据的那些事。
何为大数据?
大数据,指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。这样说定义或许很难理解,其实简单来说,大数据就是收集和分析大量信息的能力,而这些信息涉及到人类生活的方方面面,目的在于从复杂的数据里找到过去不容易揭示的规律。
由此,我们可以看出,大数据有两个明显的特征:第一,数据的属性包括结构化、非结构化和半结构化;第二,数据之间频繁产生交互,大规模进行数据分析,并实时与业务结合进行数据挖掘。
了解了大数据的概念,我们就要知道大数据在哪些方面应用广泛。很多人认为对于企业营销来说,大数据能够起到很大的作用。但其实在制造业转型升级的今天,智能化制造也离不开大数据,但是到底要怎么利用大数据,制造企业要怎样正确看待大数据?这是我们要讨论的。
制造业+大数据=?
在工业4.0的概念提出后,智能化、物联网、大数据、云计算成为热点,这些都体现了制造业需要信息化的支持,新一轮的工业革命在智能化、信息化、数字化维度才能有所突破。因为,传统制造业并不是信息化非常发达的行业,这一点体现在多数制造业的流程传统而粗糙,即使有现代化的设备,整体的信息化方案也多半来自设备制造商。
因此,制造业亟需大数据来进行一场信息化的改革,大数据会为制造业带来深远的影响:
首先,大数据能够为制造业带来更精准、更先进的工艺,以及更优质的产品,以弥补制造业整体水平低下的现状。
第二,制造业作为大数据的源头,一旦被数字化后,制造生产过程中产生的数据都可以成为大数据的范畴,对日积月累的大数据进行分析研究,便可为下一步的生产制造提供可行的方法和措施。
第三,在信息化当道的今天,智能制造已经成为趋势,制造企业除了保持匠心精神外,升级转型必然要利用数字化、大数据、物联网等技术,工业机器人的应用一定是需要大数据作为支撑。在这个“风起云涌”、“变幻万千”的高速发展时代,竞争异常激烈,如果没有布局相关技术,淘汰是唯一的结局。
第四,有人说是互联网打垮了实体经济,现实却恰恰相反。如果没有互联网,没有大数据,很多传统制造业连转型的机会都没有。遭到淘汰的制造企业,无非是没有转型,或者转型失败,但不能因此就说互联网是“杀死”制造业的“元凶”。大数据代表了新的制造业产业革命,是产业转型的标志性技术和关键性技术,把大数据运用到最佳状态,传统制造业必会迎来新的台阶。
对此,国家也出台了相关政策法规,国务院印发《促进大数据发展行动纲要》,明确提出,推动大数据发展和应用,在未来5至10年打造精准治理、多方协作的社会治理新模式,建立运行平稳、安全高效的经济运行新机制,构建以人为本、惠及全民的民生服务新体系,开启大众创业、万众创新的创新驱动新格局,培育高端智能、新兴繁荣的产业发展新生态。
大数据是一种思维变化,目前我们的制造业缺乏的就是一种创新性、逻辑性的思维能力。大数据能够为制造业提供全方位的服务,从产品设计到制造、从使用到维护、维修等售后服务阶段,产生的正向数据以及逆向数据,都将得到全面应用,智慧工厂离我们不远了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19