
数据分析:常见的Excel函数全部涵盖在这里了
世界上的数据分析师分为两类,使用Excel的分析师,和其他分析师。
每一个数据新人的入门工具都离不开Excel。因为Excel涵盖的功能足够多。
很多传统行业的数据分析师只要求掌握Excel即可,会SPSS/SAS是加分项。即使在挖掘满街走,Python不如狗的互联网数据分析界,Excel也是不可替代的。
Excel有很多强大的函数,这篇文章主要介绍各种函数的用途。实战会后续文章讲解。
函数可以被我们想象成一个盒子,专门负责将输入转换成输出,不同的函数对应不同的输出。
=Vlookup( lookup_value ,table_array,col_index_num,[range_lookup] )
上文的Vlookup就是一个经典函数。函数中包含参数,括号里的部分都是参数。我们可以把参数想象成盒子上的开关。vlookup就有四个开关,不同开关组合决定了函数的输入和输出。
=Vlookup( 参数1,参数2,参数3,参数4)
复杂的原理不需要了解。这篇文章是常用函数汇总。甚至你不需要特别记忆怎么使用函数,应用Excel函数最重要的能力是学会搜索。因为绝大部分函数网上已经有相应的解释,图文结合,非常详尽。
学会将遇到的问题转换成搜索语句,在我还是新人时并不会vlookup,我遇到的第一个问题就是关联多张表的数据,我在网上搜索:excel怎么匹配多张表的数据。于是就学会了。这里推荐使用百度,因为前三行的结果基本是百度经验,对新人学习很友好。(后续图片均引用自百度经验)
在理解函数的基础上,我会适当引入高层次的内容,SQL和Python(内建函数)。将其和Excel结合学习,如果大家吃透了Excel的函数,那么后续学习会轻松不少。
——————
清洗处理类
主要是文本、格式以及脏数据的清洗和转换。很多数据并不是直接拿来就能用的,需要经过数据分析人员的清理。数据越多,这个步骤花费的时间越长。
Trim
清除掉字符串两边的空格。
MySQL有同名函数,Python有近似函数strip。
Concatenate
=Concatenate(单元格1,单元格2……)
合并单元格中的内容,还有另一种合并方式是& 。”我”&”很”&”帅” = 我很帅。当需要合并的内容过多时,concatenate的效率快也优雅。
MySQL有近似函数concat。
Replace
=Replace(指定字符串,哪个位置开始替换,替换几个字符,替换成什么)
替换掉单元格的字符串,清洗使用较多。
MySQL中有同名函数,Python中有同名函数。
Substitute
和replace接近,区别是替换为全局替换,没有起始位置的概念
Left/Right/Mid
=Mid(指定字符串,开始位置,截取长度)
截取字符串中的字符。Left/Right(指定字符串,截取长度)。left为从左,right为从右,mid如上文示意。
MySQL中有同名函数。
Len/Lenb
返回字符串的长度,在len中,中文计算为一个,在lenb中,中文计算为两个。
MySQL中有同名函数,Python中有同名函数。
Find
=Find(要查找字符,指定字符串,第几个字符)
查找某字符串出现的位置,可以指定为第几次出现,与Left/Right/Mid结合能完成简单的文本提取
MySQL中有近似函数 find_in_set,Python中有同名函数。
Search
和Find类似,区别是Search大小写不敏感,但支持*通配符
Text
将数值转化为指定的文本格式,可以和时间序列函数一起看
关联匹配类
在进行多表关联或者行列比对时用到的函数,越复杂的表用得越多。多说一句,良好的表习惯可以减少这类函数的使用。
Lookup
=Lookup(查找的值,值所在的位置,返回相应位置的值)
最被忽略的函数,功能性和Vlookup一样,但是引申有数组匹配和二分法。
Vlookup
=Vlookup(查找的值,哪里找,找哪个位置的值,是否精准匹配)
Excel第一大难关,因为涉及的逻辑对新手较复杂,通俗的理解是查找到某个值然后黏贴过来。
Index
=Index(查找的区域,区域内第几行,区域内第几列)
和Match组合,媲美Vlookup,但是功能更强大。
Match
=Match(查找指定的值,查找所在区域,查找方式的参数)
和Lookup类似,但是可以按照指定方式查找,比如大于、小于或等于。返回值所在的位置。
Row
返回单元格所在的行
Column
返回单元格所在的列
Offset
=Offset(指定点,偏移多少行,偏移多少列,返回多少行,返回多少列)
建立坐标系,以坐标系为原点,返回距离原点的值或者区域。正数代表向下或向左,负数则相反。
逻辑运算类
数据分析中不得不用到逻辑运算,逻辑运算返回的均是布尔类型,True和False。很多复杂的数据分析会牵扯到较多的逻辑运算
IF
经典的如果但是,在后期的Python中,也会经常用到,当然会有许多更优雅的写法。也有ifs用法,取代if(and())的写法。
MySQL中有同名函数,Python中有同名函数。
And
全部参数为True,则返回True,经常用于多条件判断。
MySQL中有同名函数,Python中有同名函数。
Or
只要参数有一个True,则返回Ture,经常用于多条件判断。
MySQL中有同名函数,Python中有同名函数。
IS系列
常用判断检验,返回的都是布尔数值True和False。常用ISERR,ISERROR,ISNA,ISTEXT,可以和IF嵌套使用。
计算统计类
常用的基础计算、分析、统计函数,以描述性统计为准。具体含义在后续的统计章节再展开。
Sum/Sumif/Sumifs
统计满足条件的单元格总和,SQL有中同名函数。
MySQL中有同名函数,Python中有同名函数。
Sumproduct
统计总和相关,如果有两列数据销量和单价,现在要求卖出增加,用sumproduct是最方便的。
MySQL中有同名函数。
Count/Countif/Countifs
统计满足条件的字符串个数
MySQL中有同名函数,Python中有同名函数。
Max
返回数组或引用区域的最大值
MySQL中有同名函数,Python中有同名函数。
Min
返回数组或引用区域的最小值
MySQL中有同名函数,Python中有同名函数。
Rank
排序,返回指定值在引用区域的排名,重复值同一排名。
SQL中有近似函数row_number() 。
Rand/Randbetween
常用随机抽样,前者返回0~1之间的随机值,后者可以指定范围。
MySQL中有同名函数。
Averagea
求平均值,也有Averageaif,Averageaifs
Quartile
=Quartile(指定区域,分位参数)
计算四分位数,比如1~100的数字中,25分位就是按从小到大排列,在25%位置的数字,即25。参数0代表最小值,参数4代表最大值,1~3对应25、50(中位数)、75分位
Stdev
求标准差,统计型函数,后续数据分析再讲到
Substotal
=Substotal(引用区域,参数)
汇总型函数,将平均值、计数、最大最小、相乘、标准差、求和、方差等参数化,换言之,只要会了这个函数,上面的都可以抛弃掉了。
Int/Round
取整函数,int向下取整,round按小数位取数。
round(3.1415,2) =3.14 ;
round(3.1415,1)=3.1
时间序列类
专门用于处理时间格式以及转换,时间序列在金融、财务等数据分析中占有较大比重。时机序列的处理函数比我列举了还要复杂,比如时区、分片、复杂计算等。这里只做一个简单概述。
Year
返回日期中的年
MySQL中有同名函数。
Month
返回日期中的月
MySQL中有同名函数。
Weekday
=Weekday(指定时间,参数)
返回指定时间为一周中的第几天,参数为1代表从星期日开始算作第一天,参数为2代表从星期一开始算作第一天(中西方差异)。我们中国用2为参数即可。
MySQL中有同名函数。
Weeknum
=Weeknum(指定时间,参数)
返回一年中的第几个星期,后面的参数类同weekday,意思是从周日算还是周一。
MySQL中有近似函数 week。
Day
返回日期中的日(第几号)
MySQL中有同名函数。
Date
=Date(年,月,日)
时间转换函数,等于将year(),month(),day()合并
MySQL中有近似函数 date_format。
Now
返回当前时间戳,动态函数
MySQL中有同名函数。
Today
返回今天的日期,动态函数
MySQL中有同名函数。
Datedif
=Datedif(开始日期,结束日期,参数)
日期计算函数,计算两日期的差。参数决定返回的是年还是月等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26