
Python 列表(List)_python list_python list 操作
序列是Python中最基本的数据结构。序列中的每个元素都分配一个数字 – 它的位置,或索引,第一个索引是0,第二个索引是1,依此类推。
Python有6个序列的内置类型,但最常见的是列表和元组。
序列都可以进行的操作包括索引,切片,加,乘,检查成员。
此外,Python已经内置确定序列的长度以及确定最大和最小的元素的方法。
列表是最常用的Python数据类型,它可以作为一个方括号内的逗号分隔值出现。
列表的数据项不需要具有相同的类型
创建一个列表,只要把逗号分隔的不同的数据项使用方括号括起来即可。如下所示:
list1 = ['physics', 'chemistry', 1997, 2000];
list2 = [1, 2, 3, 4, 5 ];
list3 = ["a", "b", "c", "d"];
与字符串的索引一样,列表索引从0开始。列表可以进行截取、组合等。
访问列表中的值
使用下标索引来访问列表中的值,同样你也可以使用方括号的形式截取字符,如下所示:
#!/usr/bin/python
list1 = ['physics', 'chemistry', 1997, 2000];
list2 = [1, 2, 3, 4, 5, 6, 7 ];
print "list1[0]: ", list1[0]
print "list2[1:5]: ", list2[1:5]
以上实例输出结果:
list1[0]: physics
list2[1:5]: [2, 3, 4, 5]
更新列表
你可以对列表的数据项进行修改或更新,你也可以使用append()方法来添加列表项,如下所示:
#!/usr/bin/python
list = ['physics', 'chemistry', 1997, 2000];
print "Value available at index 2 : "
print list[2];
list[2] = 2001;
print "New value available at index 2 : "
print list[2];
注意:我们会在接下来的章节讨论append()方法的使用
以上实例输出结果:
Value available at index 2 :
1997
New value available at index 2 :
2001
删除列表元素
可以使用 del 语句来删除列表的的元素,如下实例:
#!/usr/bin/python
list1 = ['physics', 'chemistry', 1997, 2000];
print list1;
del list1[2];
print "After deleting value at index 2 : "
print list1;
以上实例输出结果:
['physics', 'chemistry', 1997, 2000]
After deleting value at index 2 :
['physics', 'chemistry', 2000]
注意:我们会在接下来的章节讨论remove()方法的使用
Python列表脚本操作符
列表对 + 和 * 的操作符与字符串相似。+ 号用于组合列表,* 号用于重复列表。
如下所示:
Python 表达式 结果 描述
len([1, 2, 3]) 3 长度
[1, 2, 3] + [4, 5, 6] [1, 2, 3, 4, 5, 6] 组合
[‘Hi!’] * 4 [‘Hi!’, ‘Hi!’, ‘Hi!’, ‘Hi!’] 重复
3 in [1, 2, 3] True 元素是否存在于列表中
for x in [1, 2, 3]: print x, 1 2 3 迭代
Python列表截取
Python的列表截取与字符串操作类型,如下所示:
L = ['spam', 'Spam', 'SPAM!']
操作:
Python 表达式 结果 描述
L[2] ‘SPAM!’ 读取列表中第三个元素
L[-2] ‘Spam’ 读取列表中倒数第二个元素
L[1:] [‘Spam’, ‘SPAM!’] 从第二个元素开始截取列表
Python列表函数&方法
Python包含以下函数:
序号 函数
1 cmp(list1, list2)
比较两个列表的元素
2 len(list)
列表元素个数
3 max(list)
返回列表元素最大值
4 min(list)
返回列表元素最小值
5 list(seq)
将元组转换为列表
Python包含以下方法:
序号 方法
1 list.append(obj)
在列表末尾添加新的对象
2 list.count(obj)
统计某个元素在列表中出现的次数
3 list.extend(seq)
在列表末尾一次性追加另一个序列中的多个值(用新列表扩展原来的列表)
4 list.index(obj)
从列表中找出某个值第一个匹配项的索引位置
5 list.insert(index, obj)
将对象插入列表
6 list.pop(obj=list[-1])
移除列表中的一个元素(默认最后一个元素),并且返回该元素的值
7 list.remove(obj)
移除列表中某个值的第一个匹配项
8 list.reverse()
反向列表中元素
9 list.sort([func])
对原列表进行排序
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18