
spss因子分析得分_spss怎么计算因子得分
解答:因子得分是可以直接得出来的,因子分析后会得到因子得分系数矩阵,因子得分系数乘以原始变量的取值就可以算出因子得分,你在操作的时候,分析——降维——因子分析——得分——选中保存变量,那么进行因子分析后就会在你的原始数据表里自动生成各因子的得分。利用这个因子得分就可以做进一步分析。
首先谢谢你赐教,然后我想问你所说的“乘以原始变量的取值”是不是做因子分析后数据编辑器里自动生成的那几列数据呀?例如下面我列出的这些。。。
FAC1-1 ,FAC2-1 ,FAC3-1….
-0.27944 1.4158 2.30829
0.95976 -0.60208 0.02159
1.97056 0.26049 -0.16356
2.06732 0.14189 -0.43296
2.00396 0.21942 -0.51329
0.868 -0.95582 -0.16877
0.08542 -0.48674 -0.30512
-0.21972 -0.90948 -0.35033
-0.44874 -1.27364 2.47382
-0.43223 -0.44576 -1.13296
-0.5367 -1.07011 -0.41381
怎么操作spss可以自动算出因子得分?我是spss18.0
分析——降维——因子分析——得分——显示因子得分系数矩阵
想通过SPSS直接求出各个主因子的得分,在spss里按钮步骤应该怎么选
请帮忙者把步骤说得详细一些,因子分析选项里我找不到计算公因子得分的选项,从图书馆找了几本资料书,上面都没有关于spss里计算各个公因子的得分步骤。我曾试着把数据弄到execl里计算,但是那样太麻烦了
主因子?你是主成分分析呢还是因子分析呢?
1.如果是主成分分析,综合得分是自己算的,即factor做完之后(得选在factor anaylsis界面选中scores中的display factor score……才会出来这个矩阵)因子载荷矩阵下面那个带score的的表格就是计算主成分得分的系数矩阵,然后将原始数据标准(用描述性统计分析就能直接得到)化后的结果带入方程式(方程系数就是系数矩阵,这个过程得自己算),得到各个主因子的综合的得分,若要计算综合得分,则需要在写一个方程式,Y=Y1*a+y2*b……,y1,y2……为各个主成分得分,a,b……为各个主成分的发差贡献率,在特征值那表里头了。最后得到Y即为综合得分。数据分析培训
2.要是因子分析算因子得分就简单了,直接在scores中选中save as variable,那么在表格中直接就会多出来一列得分变量了,即为因子得分。
在说说他俩区别吧,主成分就一个用途,那就是排序,比如算哪个城市发展的好可以用,主成分没有含义。因子分析可以分析出来各个因子代表什么,比如算影响各个城市发展的主要因素是什么。共同点就是在SPSS中操作的过程是一样。我是学统计的,这么解释不知道你明白不。在因子分析中点击save,选中因子得分,就可以了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15