
spss因子分析得分_spss怎么计算因子得分
解答:因子得分是可以直接得出来的,因子分析后会得到因子得分系数矩阵,因子得分系数乘以原始变量的取值就可以算出因子得分,你在操作的时候,分析——降维——因子分析——得分——选中保存变量,那么进行因子分析后就会在你的原始数据表里自动生成各因子的得分。利用这个因子得分就可以做进一步分析。
首先谢谢你赐教,然后我想问你所说的“乘以原始变量的取值”是不是做因子分析后数据编辑器里自动生成的那几列数据呀?例如下面我列出的这些。。。
FAC1-1 ,FAC2-1 ,FAC3-1….
-0.27944 1.4158 2.30829
0.95976 -0.60208 0.02159
1.97056 0.26049 -0.16356
2.06732 0.14189 -0.43296
2.00396 0.21942 -0.51329
0.868 -0.95582 -0.16877
0.08542 -0.48674 -0.30512
-0.21972 -0.90948 -0.35033
-0.44874 -1.27364 2.47382
-0.43223 -0.44576 -1.13296
-0.5367 -1.07011 -0.41381
怎么操作spss可以自动算出因子得分?我是spss18.0
分析——降维——因子分析——得分——显示因子得分系数矩阵
想通过SPSS直接求出各个主因子的得分,在spss里按钮步骤应该怎么选
请帮忙者把步骤说得详细一些,因子分析选项里我找不到计算公因子得分的选项,从图书馆找了几本资料书,上面都没有关于spss里计算各个公因子的得分步骤。我曾试着把数据弄到execl里计算,但是那样太麻烦了
主因子?你是主成分分析呢还是因子分析呢?
1.如果是主成分分析,综合得分是自己算的,即factor做完之后(得选在factor anaylsis界面选中scores中的display factor score……才会出来这个矩阵)因子载荷矩阵下面那个带score的的表格就是计算主成分得分的系数矩阵,然后将原始数据标准(用描述性统计分析就能直接得到)化后的结果带入方程式(方程系数就是系数矩阵,这个过程得自己算),得到各个主因子的综合的得分,若要计算综合得分,则需要在写一个方程式,Y=Y1*a+y2*b……,y1,y2……为各个主成分得分,a,b……为各个主成分的发差贡献率,在特征值那表里头了。最后得到Y即为综合得分。数据分析培训
2.要是因子分析算因子得分就简单了,直接在scores中选中save as variable,那么在表格中直接就会多出来一列得分变量了,即为因子得分。
在说说他俩区别吧,主成分就一个用途,那就是排序,比如算哪个城市发展的好可以用,主成分没有含义。因子分析可以分析出来各个因子代表什么,比如算影响各个城市发展的主要因素是什么。共同点就是在SPSS中操作的过程是一样。我是学统计的,这么解释不知道你明白不。在因子分析中点击save,选中因子得分,就可以了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26