
专家给大数据“泼冷水 ”:中国大数据仍在初级阶段
大数据成为时代的新宠儿,不知情的人以为,中国大数据已经发展的差不多了,在专家眼里,大数据还处在初级阶段,出现的许多问题都亟待解决,大数据还要再迈过几道坎儿。“我国意识到大数据的价值,并不比欧美晚,但并没有很好的大数据应用。”大数据运用还在法外“裸奔”,这都是大数据要...
“不少人以为,大数据技术很成熟了,甚至说大数据是万能的。”近日,在“中关村大数据日”上,西安交通大学数学与统计学教授徐宗本院士说,“大数据具有大价值,但也有大忽悠的一面。”在接受记者专访时,数据堂合伙人柴银辉认为,“大数据就像5年前的云,还处于初级阶段,还需要跨过几道坎。在这个过程中,要谨防泡沫出现”。
数据无差别存储:想要应用成本要降万倍左右
“数据无差别存储,使用起来成本太高。”柴银辉估计,“这些数据想要应用,成本要降到万倍左右。”
目前,很多人把“大数据”等同于“数据大”。在柴银辉看来,“分类存储的数据才能产生价值”。
对大数据拥有者进行分析,柴银辉认为,前景并不乐观。“大家说政府掌握数据,但很多部门只是把文件堆在那里,甚至没有数据库。国企有数据,却不知该怎么存放。无差别存储的数据,很难产生价值。”
柴银辉认为,大数据想要应用,就要经历全、新、细、准四个阶段,但目前很多数据还没完成第一个阶段。
“我国意识到大数据的价值,并不比欧美晚,但并没有很好的大数据应用。”电子科技大学教授周涛曾经分析,其中一个重要原因,是拥有大数据的人、拥有大数据分析技术的人、拥有数据分析需求的人是分离的。
他举例说明,比如遥感、水利、水文数据,如果国家不能有效管理起来,就没法产生价值,反而是一个巨大的负担。
技术上并不成熟:新分析方法还没出现
“不少人觉得,大数据技术很成熟了。”徐宗本说,这其实是一个误区。
徐宗本从处理和分析的区别入手加以说明:“我们想做一个简单统计,做一个查询,做一个排序,做一个比对,等等,这叫数据处理。它是用计算机的标准逻辑一步过的处理方式。而数据中有没有趋势、有没有共性结构、有没有关联数据,这些叫数据分析。”
为了更便于理解,徐宗本举了一个例子:“在这间屋子里,找出谁个子最高,这是处理,但找谁和谁关系最好,这叫分析。”
但在现实社会里,很多人把两者混为一谈。这也造成了他们对大数据技术的误读。徐宗本认为,大数据的成功是部分处理技术的成功。现有例子对于分析而言,基本还是传统方法,新方法并没有出现。
硬蛋首席技术官李世鹏告诉记者:“我们在做智能硬件孵化时发现,对于供应商和创业者需求的精准分析,大数据还需要进一步成熟。”
“大数据不是低端业务的简单整合。”数据堂CEO齐红威说,“现在的大数据应用还非常浅,远没到分析阶段。”
人才瓶颈制约发展:基础性数据分析人才缺口达1400万
“全球竞争对手,几乎早于我们半年,把顶尖大学大数据研究室里的优秀专家挖光了。”滴滴出行CEO程维说,“目前,我国每年培养的大数据深度学习方面的博士生大概只有50个人。”
“大数据发展的瓶颈是人才。”程维说,大数据健康发展,必须培养出世界领先的团队。
据中国商业联合会数据分析专业委员会统计,我国未来基础性数据分析人才缺口将达1400万;而在BAT企业招聘职位里,60%以上都在找大数据人才。
“一个大数据方面的普通大学生,年薪起码也有五六万美金,吸引力不能说不强,但现在还是缺人。”数联铭品CEO曾途告诉记者,“大数据是一个新兴事物,高校、院所里培养的人才还不多。这种现象短时间内很难改变。”
“现在大数据有很多问题,首先就是人才缺乏。”北京大数据研究院学术委员会主任张平文提到了一个担忧,“高端人才都在公司里,年薪上千万,学校雇不起。这可能会对基础研究产生影响。”在他看来,解决这个问题,需要高校、院所机制体制的突破。
个人隐私亟待保护:大数据运用还在法外“裸奔”
“前两天,家人甲状腺不舒服,我在网上查了相关知识。过了一天,就有人说是甲状腺医生,想加我为微信好友。”张平文所说的,正是人们对于数据安全的担忧。
“数据具有特殊性。如果反映的是群体趋势,这对生活是有益的;如果触及个人隐私,就可能造成伤害。”柴银辉说。
“在美国,你去贷款,但哪一年在图书馆借书忘了还或推迟还,就可能受影响。美国诚信体系建设比较完善。同时,几十年来,相关立法可以让个人隐私得到很好的保护。”曾途说,“目前,我国大数据还处在起步阶段,尚未进行立法监管。”
“存在可观的利润空间,就可能出现泄密、买卖信息。”曾途认为,不让大数据运用在法外“裸奔”,“立法应当提上议程”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29