
人工智能或将成为解锁大数据的关键因素
我们都知道大数据的价值潜力无穷,然而如何挖掘出大数据的价值是关键。近年来,围绕着大数据以及如何更好地使用它的主题,已经展开过多次无休止的讨论,却未曾有一个大家都认同且满意的结论,这一个已经成为一个长久讨论主题。然这是一项将解锁利益和弱人工智能的技术,而后者能将整合大数据和其他渠道信息创造出许多宏伟的有益的数据图片。
人工智能或将成为解锁大数据的关键因素
大数据的大多数领域和消费者及营销有关,从这个角度而言,20世纪60年代至20世纪90年代初这个时间段就是一个黄金期,在这个时间段内,能控制商业媒体、大型报业集团、电视和广播频道的人有限。诸如《加冕街》等电视节目的超高收视率和报纸的巨大发行量意味着更快捷更不费力地将广告摆在几乎所有消费者面前变得相对容易。
消费者当权
然而,事情已经发生了根本性的变化。消费者已经获得了媒体的所有权。电视观众数量减少,报纸读者数量也直线下降,如今消费者杂志的数量是20年前的两倍多,数字录象设备TIVO、宽带的问世及普及意味着消费者能够决定他们看什么,听什么、何时看、何时听。他们还能剪去电视广告。媒体的土崩瓦解意味着公众已经处于完全自主的地位,而原先媒体的所有者却无法扭转局面。
现在消费者们都握有极大的权力。这就意味着——为了与消费者进行成功有效的沟通,品牌需要尽可能多地了解消费者,这样它们就能确保每一条产品信息都成功抵达消费者心灵。如果品牌够幸运,那么它们可能在信息被消费者拒收前让消费者为之考虑一两秒。如果失败了,品牌就没有第二次机会了。
在这样的情况下,如果你想要知道消费者在想什么以及他们可能对什么内容积极回应,那么数据和数据建模就很重要了。此外这还和“大数据及如何最好地使用大数据”息息相关。问题的答案是利用弱人工智能追踪消费者情绪以及从大数据中提取具体的相关信息。
弱人工智能的好处
弱人工智能能够做到这点是因为它具备瞬间搜索大量信息并根据上下文找出请求的特定信息以生成准确报告的能力。虽然在任何搜索中信息必须被狭隘定义,但是在狭隘定义的同时还能执行多个相关搜索的能力意味着它能提供准确模型。
跟踪几乎所有人的情绪的最好途径是监视社交媒体。目前有各种各样能提供“实时跟踪消费者评论”能力的基于弱人工智能的订阅服务。然而,它们很昂贵,且灵活性有限。
社交媒体监控咨询公司建议称,结论不应该从通过监视收集到的原始数据中马上得到。它们相信详细阅读并试图从更多的细节中找出模式非常重要。弱人工智能能做到这点,但不一定要通过目前的监控程序包,按要求制作的弱人工智能程序包将不可避免地出现。
特易购的难题
在大数据方面,弱人工智能再次成为答案,因为它能使用户基于上下文有效信息创造有价值分析。对此进行说明的最好的方法之一是运用“特易购多年来面临购物卡数据相关问题”这个例子。作为英国最大零售商,特易购拥有大量的消费者购买物品的信息,但它却不知道消费者在其商店不会购买的物品。
例如,特易购能知道个人消费者周六通常购买红酒和法式面包,但它不能确定消费者是否购买奶酪;它能知道人们购买牙刷,但不知道他们不买牙膏。
显而易见,消费者在其它商店进行补充性购物。弱人工智能被用于推敲这一情景并找到答案。接着特易购就能通过为填补消费者购物缺口而展开相应促销、或者发放优惠券跟进。
即时洞察
根据特定国家对数据的管理规定,弱人工智能还允许数据营销商将网上找到的信息添加到现有的消费者文件中。尽管在与消费者沟通过程中不能这么做,但是它在数据建模过程中的使用仍能帮助品牌所有者更好地理解消费者行为。
媒体的进一步瓦解意味着监视消费者情绪和兴趣爱好将变得越来越难。再一次,弱人工智能将成为问题的答案。它可能是一项非常简单的技术,但如果被使用正确,它将能基于对大量信息的搜索迅速创造洞察视野。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15