
四大数据分析方法讲解
数据分析的作用越来越大,企业运用的次数也越来越多。不少企业不仅意识到了该分析方法的重要性,同时对其分析方法也产生极大的兴趣。而从目前众用户的使用方法来看,有四大方法是大家常用,而且效果不错的。
1.数据分析之记忆基础推理法
这种方法能够通过已经发生的案例来预测未来发展的一些情况,其主要涉及两个因素,分别是距离函数和结合函数。前者主要是为了找出相似的案例,后者则是将其结合在一起,供参考。记忆基础推理方法的优点在于学习能力强,能够从旧案例中找到新案例的知识点,为企业发展带来有价值的参考数据。而另一个优点在于这种方法能够包容各种形态的数据,效果甚好。
不过,记忆基础推理法也是有缺点的,就是历史数据越多,需要分析的时间越长。
2.数据分析之基因算法
基因算法和细胞分裂有着异曲同工之妙,要想使用基因算法,首先要建立一个模式,然后通过一连串的动作来模拟。基因算法从运用到现在,表现一直不错,因而深受欢迎。
3.数据分析之连结分析
这种以数据图形理论为基础的分析方法,往往以关系为主体,从人和人、物与物之间的关系出发,寻找关系点。比如,电信行业的人可以通过收集顾客打电话的时间和频率,推算顾客的偏好以及提供对公司发展有利的方案,除此之外,通过连结分析,还能够找出对企业发展更为有利的参考数据。
4.数据分析之区别分析
区别分析比较适合分析因变量和自变量为定性定量的问题,这种分析往往在解决分类上非常实用。如果因变量的构成是两个群体,所采用的方式可以围多元区别分析。
区别分析能够找出预测变量的组合,使组间变异大于组内变异,同时还能检查出重心是否有差异,哪些预测变量有最大区别能力等,为企业提供新一轮的测试数据。
除了这四种数据分析方式之外,逻辑回归分析、类神经网络分析、在线分析处理、群集侦测技术等都是数据分析常用的手法,也是企业获取信息,挖掘数据潜能的直接有效方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26