
利用大数据构建智慧城市的两个关键点
近年来,几乎全球都在关注智慧城市的发展,而其中大数据成为打造智慧城市不可避免的话题。大数据为智慧城市发展带来新的契机,通过大数据分析为智慧城市建设带来新的解决思路。日前欧盟和日本达成了新的合作协议,他们正试图发展基于云的开放数据平台的智能城市;金砖国家也正不断增进合作,加快建设以数据为中心的城市,大容量、高速度与多样性的大数据能为智慧城市带来什么?
在此背景下,我们希望吸引更多人参与并分享他们的成果。我们提出了“平台即服务”发展战略。该平台由城市政府运行,也代表着城市形象,为形成开放的数字化社会奠定基础。其实大数据并不需要了解城市部门的主要业务及运作流程。单纯从数据的角度出发,通过分析之后,大数据就能得出一些规律,不关乎业务,不关乎结果,但能完全反映出数据之间的关联性。从大数据的角度出发,推动城市的运营与发展,这是一个可以在决策前纯计算机运作模式,使得结果更加量化。这么做既可以提高城市对市民和商业的吸引力,同时又帮助了城市简化和完善自身的政府流程和服务。
参与国之间不仅需要保证信息透明度还需要灵活应对各种情况,以确保创新方法与现有设施完美衔接,巴西的里约热内卢的经验就很值得我们学习。目前参与者包括欧洲的阿姆斯特丹、苏黎世和穆尔西亚,还有日本东京、札幌、横须贺。
巴西里约热内卢建立了市政运营中心。里约市整合了原有的市政管理系统,将城市面临的问题分为事件、事故、紧急情况和危机四类,为市政人员开发了专用的用户手册,规定了四类问题以及处理洪水、山体滑坡等情况的流程;为系统配置了各种平台(电话、短信、twitter等)的发布系统,并设立专职运营官,负责系统运维。市政运营中心可以跟据两项原本不相干的业务系统数据进行决策。
里约智慧城市建设项目的意义在于,这是世界上第一个尝试“用IT主导决策”而不是“用IT辅助决策”的项目。里约项目尝试将数据中心作为决策中心,在极小投资的情况下取得了巨大的回报。里约智慧城市建设项目的另一个意义在于将旧城的一些设施与新举措完美对接,这也为我们利用大数据构建智慧城市提供了借鉴。
由于连通性和数字化是建成人们渴望已久的“智慧城市”的关键,大数据的发展将发挥举足轻重的作用。
中国电信股份有限公司北京研究院“灯塔大数据智慧城市”负责人贺群说到,大数据应用在智慧城市的关键环节有两个,分别是“ID数据打通”和“人群属性分析建模”。
ID数据打通
智慧城市涉及多个细分领域,同一个用户可能会在多个场景下留下数据信息,在后期大数据分析中,如何将同一身份的用户信息准确抓取、精准整合,这是分析的关键,也关系到结论准确性。简单来说,同一用户的交通数据、住宿数据、旅游数据等会在不同需求场景下有多种体现方式,如何准确跟踪到用户、将用户多种数据定位到同一个人身上,将决定之后大数据分析的精准性,在整体上会影响某一人群的用户画像分析结果。
人群属性分析
对于不同用户行为,在不同场景下代表不同需求和消费偏好。常见的定位需求可以发生在停车场、景区、餐厅、商圈等多个场景和地点,在不同场景下的定位需求是不同的,如何定义具体行为的意义,将其准确“贴标签”归类是大数据在智慧城市应用中的另一关键。
大数据的发展决定了智慧城市将以怎样的速度崛起。随着技术进步和应用渗透,以及市民生产生活方式的转变,城市规划建设的理论与实践也将获得相应扩充与调整,探索新的规划方法并产生新的规划思想,现在还只是开始。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15