京公网安备 11010802034615号
经营许可证编号:京B2-20210330
重视大数据,但不能抛弃“小数据”
当前,全国各地都在建设大数据中心,有些偏僻的山区都建立了容量达2PB(拍字节)以上的数据处理中心,许多城市公安部门要求存储3个月以上的高清监控录像。其背后的问题是,这些系统的成本都非常高。
数据挖掘的价值是用成本换来的,不能不计成本、盲目建设大数据系统。什么数据需要保存、要保存多长时间,应当根据可能的价值和所需的成本来决定。大数据系统技术还在研究之中,美国的E级超级计算机系统要求能耗降低到原来的千分之一,计划到2024年才能研制出来。因此,用现在的技术构建的巨型系统,能耗极高。
一味追求数据规模不仅会造成浪费,而且效果未必很好。多个来源“小数据”的集成融合可能挖掘出单一来源大数据得不到的“大价值”。因此,应在数据的融合技术上多下功夫,重视数据的开放与共享。所谓数据规模大与应用领域有密切关系,有些领域几个PB的数据未必算大,有些领域可能几十TB(太字节)已经是很大的规模。
此外,大数据主要难点不是数据量大,而是数据类型多样、要求及时回应和原始数据真假难辨。现有数据库软件无力应对非结构化数据,所以要重视数据融合、数据格式的标准化和数据的互操作。数据质量不高是大数据的特点之一,但尽可能提高原始数据的质量仍然值得重视。比如,脑科学研究的最大问题就是采集的数据可信度差,基于可信度很差的数据难以分析出有价值的结果。
可见,发展大数据不能无止境地追求“更大、更多、更快”,要走低成本、低能耗、惠及大众、公正法治的良性发展道路,要像现在治理环境污染一样,及早关注大数据可能带来的“污染”和侵犯隐私等各种弊端。
实际上,发展信息技术的目的是为人服务,检验技术的唯一标准是应用。我国发展大数据产业一定要坚持“应用为先”的发展战略,坚持应用牵引的技术路线。所谓技术有限、应用无限,各地发展云计算和大数据,一定要通过政策和各种措施调动应用部门和创新企业的积极性,通过跨界的组合创新开拓新的应用,从应用中找出路。
目前流行的大数据定义是“当前技术无法处理的数据集合”,这种针对未知技术的定义强调大数据不同于数据库等传统技术能对付的小数据,有利于推动基础研究、激励探索新技术,但可能引导大家只重视目前解决不了的问题,如同走路的人想踩着自己身前的影子。其实,目前各行各业碰到的数据处理多数还是“小数据”问题。我们应重视实际碰到的问题,不管是大数据还是小数据。
统计学家们花了200多年,总结出认知数据过程中的种种陷阱,这些陷阱不会随着数据量的增大而自动填平。大数据中有大量的小数据问题,大数据采集同样会犯小数据采集一样的统计偏差。Google公司的流感预测这两年失灵,就是由于搜索推荐等人为的干预造成统计误差。
因此,我们不要攀比大数据系统的规模,而是要比实际应用效果,比完成同样的事消耗更少的资源和能量。先抓老百姓最需要的大数据应用,因地制宜发展大数据。发展大数据与实现信息化的策略一样:目标要远大、起步要精准、发展要快速。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06