
样本方差为什么分母N-1 自由度_样本方差自由度
样本方差不是让你就算出样本方差来,而是用样本方差来估计总体方差,如果用n做分母那么算出的方差不是无偏估计,也就是说n做分母的样本方差的期望值不等于总体方差的期望值,那就更谈不上什么有效性,只有当分母是n-1的时候样本方差才是无偏的,才能够反映总体方差.
1.总体方差为σ2,均值为μ
S=[(X1-X)^2+(X2-X)^2....+(Xn-X)^2]/(n-1)
X表示样本均值=(X1+X2+...+Xn)/n
设A=(X1-X)^2+(X2-X)^2....+(Xn-X)^2
E(A)=E[(X1-X)^2+(X2-X)^2....+(Xn-X)^2]
=E[(X1)^2-2X*X1+X^2+(X2)^2-2X*X2+X^2+(X2-X)^2....+(Xn)^2-2X*Xn+X^2]
=E[(X1)^2+(X2)^2...+(Xn)^2+nX^2-2X*(X1+X2+...+Xn)]
=E[(X1)^2+(X2)^2...+(Xn)^2+nX^2-2X*(nX)]
=E[(X1)^2+(X2)^2...+(Xn)^2-nX^2]
而E(Xi)^2=D(Xi)+[E(Xi)]^2=σ2+μ2
E(X)^2=D(X)+[E(X)]^2=σ2/n+μ2 (为什么是N分之方差)
所以E(A)=E[(X1-X)^2+(X2-X)^2....+(Xn-X)^2]
=n(σ2+μ2)-n(σ2/n+μ2)
=(n-1)σ2
所以为了保证样本方差的无偏性
S=[(X1-X)^2+(X2-X)^2....+(Xn-X)^2]/(n-1)
E(S)=(n-1)σ2/(n-1)=σ2
2.自由度也可以解释,不是有n个与均值偏差的平方和吗?正好这n个表
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15